Using Linux Traffic Control on Virtual Circuits

J. Zurawski - Internet2 — zurawski@internet2.edu
February 257 2013

1. Abstract

Research and Education (R&E) networks have experimented with the concept of
Virtual Circuits (VC) for a number of years. This connection-oriented service
emulates a physical point-to-point connection, using the underlying technology of
packet-switched networks. ESnet's On-Demand Secure Circuits and Advance
Reservation System (OSCARS) [OSCARS] is an implementation of VC control that
facilitates network management within, and between, domains. The underlying
mechanisms for management of these logical connections rely on Quality of Service
(QoS) procedures to management utilization, latency, and throughput.

Recent research [OSCARSQoS] has highlighted some harmful characteristics of the
QoS-based management of VC resources; notably it has shown that reliable
protocols, such as Transmission Control Protocol (TCP), can react poorly to some of
the actions implemented to guarantee bandwidth reservation and flow
segmentation. A similar pattern emerges, where a traffic flow can be slowed down
due to out of order behavior introduced, when multiple ingress queues are used on
a particular interface. Similarly, lack of available buffering to support packet bursts,
common in TCP, can drop traffic silently in some cases.

Methods to control the burst behavior of an application or protocol, as well as limit
the overall bandwidth sent, can be introduced at the host. Tools such as te, found in
Linux based operations systems, offer a robust and predictable way to introduce
QoS behavior at the source of trafficc. When implemented correctly, these operating
system mechanisms will aide in the end-to-end flow of traffic across VC resources.

2. Sample Network Environment

Testing of the recommendations found in this document were performed on hosts
affiliated with the NSF funded DYNES project [DYNES]. DYNES facilitated the
purchase of hardware resources for campuses and regional R&E networks, and
encouraged the use of the Internet2 ION service [ION], a VC implementation based
on OSCARS.

The testing machines were Dell R510 servers, with 10Gbps capable network cards.
The CentOS 5 operating system, a Red Hat Enterprise Linux Variant, was used as the
base control software along with OSCARS to handle the VC control plane, and
DRAGON to facilitate communicate with the local switching resources.

The servers were connected to Dell 8024F Switches using 10G optical connections.
These switches are designed nominally for data center usage, but are capable of
performing in wide area environments. All switches feature a configurable (up to
128 KB) ingress buffering behavior, and were tested to ensure the capability to
deliver multiple sustained 10Gbps network flows. Campus and regional network
switches were uplinked to Internet2 ION directly, or through the use of statically
configured (e.g. specific pre-configured VLANs) network devices.

All system and network devices were tuned, using recommendations from ESnet’s
Fasterdata resources [Fasterdata], when applicable. Host tuning recommendations
regarding memory configuration and network interface settings were applied, along
with recommendations regarding network setup to remove unnecessary firewalls
and spurious networking devices from the path.

3. OSCARS Operation

OSCARS relies on the concept of a federation to facilitate the creation of end-to-end
paths. Using certificate technology, it is possible to peer OSCARS instances that
have control over a specific domain’s resources. For example, ESnet has chosen to
peer with Internet2 ION. Thus members of either site could invoke VC paths
between the domains, as long as resources and permissions allowed this. To extend
the example, if a school such as Texas Tech University peered with Internet2 ION,
they could make a VC, if resources were available and permitted for use, into ESnet
by exercising the peering relationship.

OSCARS has a notion of bandwidth guarantees, built on QoS, for hardware that is
able to support it. Simplistically, OSCARS will install mechanisms on network
devices that will treat traffic (up to the requested rate for the VC) in a special
manner, more so than other traffic on the same interface that is not affiliated with
the VC. For example, on a 10Gbps interface we could reserve 2Gbps for a VC. Those
using that VC are guaranteed to have access to the full 2Gbps, even as the remaining
traffic on the interface grows. This can be modeled into two basic classes of service:

* Expedited Traffic
e Best Effort Traffic

The QoS mechanisms also feature other behavior that will kick in if the requestor of
the aforementioned VC tries to use more resources than were requested. In an
extended example, lets assume that the application using the VC tries to push
2.5Gbps of traffic through the 2Gbps reservation. 2Gbps of the traffic will continue
to be treated as expedited, but the remaining 0.5Gbps will be sent into a 37 queue:
less than best effort service. This queue is treated on a lower priority than regular
traffic on the interface. One can imagine that on an interface with no traffic, this
separation of traffic will have minimal impact, on a heavily loaded interface; there is

the potential to disrupt the flow, particularly if delicate protocols such as TCP are
used.

Experimentation [OSCARSQoS] has shown that this queuing behavior can cause
disruption in traffic flows that utilize TCP. The queuing introduces out of order
behavior, which causes a stall (and in some cases unnecessary retransmission) of
information. Investigations into better methods of management for the QoS are still
being conducted, with ideas ranging from hard traffic drops (which in some cases
are preferred to out of order behavior) to softer QoS management policies
implemented by the switches and hosts under consideration.

Traffic management implemented within the network can be subjective. Without
knowledge of what a particular flow is doing, networks can only judge based on
information related to source, destination, and prior behavior. Alternatives for
traffic management abound, with a likely answer being implemented by an
application with knowledge of underlying network capabilities, or via the sending
and receiving hosts directly.

We will investigate the latter option - allow the hosts to regulate the flow of traffic
exiting the network interfaces. There is system software, some implemented within
the operating system kernel, that can enforce a form of QoS using similar
mechanisms to that of network devices. When put in place these rules help to
smooth out fragile protocols, such as TCP, such that they do not exhibit behaviors
that will burst beyond available buffers, or exceed bandwidth reservations on VC
infrastructure.

4. Using TC

tc is used to show and manipulate traffic control settings within the Linux operating
system. Essentially, we create queues on the host interface (similar to network
device QoS) to categorize traffic, and handle it in different manners. E.g. we can
make traffic adhere to a certain bandwidth, latency, or even emulate errors and
drops on a faulty network. With queuing we determine the way in which data is
sent; it is important to realize that we can only shape data that we transmit.

A possible use cases for tc, and how we intend to use it, is to smooth bandwidth to a
specific bottleneck range. For example, lets say we have a 10Gbps capable network
card on the host, and a path that consists of 10Gbps links for 90% of the end to end
path. There is a single 1Gbps link as the bottleneck, thus it benefits us to smooth the
traffic to this bottleneck link instead of allowing TCP to fluctuate between over and
under sending (with a resulting average that is less than the bottleneck). Smoothing
at the host allows us to regulate our traffic more effectively than TCP can, especially
as the distance between the end points grows.

tc consists of the following functionalities [TCMan]:

* shaping - When traffic is shaped, it’s rate of transmission is under control.
Shaping may be more than lowering the available bandwidth - it is also used
to smooth out bursts in traffic for better network behavior. Shaping occurs
on egress.

* scheduling - By scheduling the transmission of packets it is possible to
improve interactivity for traffic that needs it while still guaranteeing
bandwidth to bulk transfers. Reordering is also called prioritizing, and
happens only on egress.

* policing - Where shaping deals with transmission of traffic, policing pertains
to traffic arriving. Policing thus occurs on ingress.

* dropping - Traffic exceeding a set bandwidth may also be dropped forthwith,
both on ingress and on egress.

Processing of traffic is controlled by three kinds of objects: gdiscs, classes and
filters. We will use all three in our examples.

A qgdisc is short for queuing discipline. Whenever the kernel needs to send a packet
to an interface, it is en-queued to the gdisc configured for that interface.
Immediately afterwards, the kernel tries to get as many packets as possible from the
gdisc, for giving them to the network adaptor driver. Some gdisc can contain
classes, which contain further qdisc. When the kernel tries to de-queue a packet
from such a classful gdisc it can come from any of the classes. A gdisc may for
example prioritize certain kinds of traffic by trying to de-queue from certain classes
before others. A filter is used by a classful qdisc to determine in which class a
packet will be en-queued. All filters attached to the class are called, until one of
them returns with a verdict.

We propose some very specific uses of tc for traffic management on VCs: establish a
simple Hierarchical Token Bucket (HTB) queue and traffic rates that are slightly
below the requested circuit capacity. The following sections will outline our steps.

4.1. Creating a Circuit

OSCARS can be used to create circuits between participating sites. In general you
need to have an account on one end of the circuit (source or destination), and the
ability to reference dynamic resources through an address (e.g. URN string).

Figure 1 shows what a typical OSCARS login screen looks like. It is beyond the scope
of this document to describe installation and use of OSCARS, so we assume this
portion is done for a given domain:

On-demand Secure Circuits and Advance Reservation System
https @ idc.ttu.edu:8443/OSCARS/

On-demand Secure Circuits and Advance Reservation System
A collaboration between ESnet, Internet2, DANTE, and ISI East

February 25,201311:14 [Login to OSCARS. |

Login/Logout

T —

LOGIN

Sign in via your OSCARS login and password to access this system. To find out about OSCARS and how it works, go to the documentation. To obtain an account o request more
information, email one of the contacts below.

More documentation can be found by clicking on the link at the bottom of this page.

Documentation | ESnet | Berkeley Lab | Notice to Users

Contacts: Chin Guok, David Robertson

Figure 1 - Initial Loggin Screen - OSCARS Server at Texas Tech University

After logging in, Figure 2 shows the available options. We are interested in creating
a circuit to another participating location:

On-demand Secure Circuits and Advance Reservation System

On-demand Secure Circuits and Advance Reservation System
A collaboration between ESnet, Internet2, DANTE, and ISI East

February 25,2013 11:14 [dynes_admin signed in. Use tabs to navigate to difierent pages. |

Details Create UserProfile UserList ~ AddUser Atributes Institutions Authorizations Authorization Details

Login/Logout
LOGOUT
You are currently logged in to OSCARS. Return 1o this tab and click on the LOGOUT button to exit.

NOTE: This interface is based on the Doio toolkit. Please report any problems to the administrators listed at the bottom of this page. Do not use the browser's back or forward button
while in this application.

Basic OSCARS functionality is accessed by clicking on the following tabs:

« The Reservations tab displays a default list of all pending and active ions. You can change the tions listed through the input fields at the top. Clicking on a row
brings up that reservation's details in the Reservation Details tab.

« The Create Reservation tab displays a form to schedule a reservation with a specified bandwidth on a circuit.

« The Users tab displays a list of OSCARS users and associated information. Clicking on a row brings up that user's details in the User Profile tab.

« The Add User tab allows an administrator to add a new OSCARS account.

More documentation can be found by clicking on the link at the bottom of this page.

Documentation | ESnet | Berkeley Lab | Notice to Users

Figure 2 - OSCARS Options

Figure 3 shows details needed to create a circuit:

* URNSs of endpoints
* Time of Circuit

* Bandwidth Requirements
e Path or VLAN specifics (if needed)

8 006 On-demand Secure Circuits and Advance Reservation System

(<>) (2] (@] [hups@ idc.ttu.edu:8443/05CARS/

Required inputs are bordered in green. The source and destination can be topology identifiers, host names, or IP addresses, depending on the layer used. Click on the boxes
‘associated with the start and end dates to bring up a calendar widget. The reservation time slot defaults to now, and now + 4 minutes, respectively, if you leave the dates and times
empty.

WARNING: Entering a series of hops in the Path field may alter routing behavior for the selected flow. Hops can be topology identifiers, host names, or IP addresses, depending on
the layer used. Note that the path field will expand to the number of lines occurring in the hops list.

Create Reservation || Production circuit Resetform fields

‘Source

Destination

Path (series of hops)

Bandwidth (Mbps) [2000 1(1-10000)
Description 2G Test between TTU and UWisC | (For our records)
Start date 212572013 1272572013
Starttime [11:00 11115

End date 272572013 1272572013

End time [12:00 [11:19

@ Use layer 2 parameters () Use layer 3 parameters < >[_| Same VLAN on source and destination
Source VLAN [

‘Source VLAN type Tagged +

Destination VLAN 1

Destination VLANtype [Tagged +

|tag, or range, e.g. 3000-3100

|tag, or range, e.9. 3000-3100

Documentation | ESnet | Berkeley Lab | Notice to Users

Figure 3 - Creating a Circuit with Known URNs (Texas Tech University and University of Wisconsin)

The circuit is shown active in Figure 4, and we see what VLANs we have been
assigned.

On-demand Secure Circuits and Advance Reservation System
hitps @ idc.ttu.edu:8443/OSCARS/

| REFRESH | | MODIFY | | CANCEL | | CLONE | | CREATE PATH | | TEAR DOWN PATH | | OVERRIDE STATUS
GRI tu.edu-152

Status ACTIVE

User dynes_admin

Description 2G Testbetween TTU and UWisc

Start date 272512013

Starttime (1115
End date (272572013
End time [12:00
Created time 2013002125 11:16

Bandwidth (Mbps) 2000

Source po ink=*
1:port=1-0-201link="

Hop

1:po £
urn:ogf:network:domain=ttu.edu:node=visri :port=1-0-1:link=ion

1y

1

Interdomain path

Source VLAN
Tagged
Destination VLAN
Tagged

Figure 4 - Complete Circuit, with VLANs and Path Listed

[t is now necessary to configure the local hosts that are available on this network
(e.g. the switch where the circuit is known to terminate) to communicate on the
designated VLAN.

4.2. Adding Machines to Circuit via VLANs and Private Address Space

Each machine that will communicate on the newly established circuit will need to be
added to the VLANSs for the different sites. Note we may not have the same VLANs on
each end, as OSCARS performs a process called VLAN Translation. We know that the
VLANSs we care about are:

* Texas Tech University = 3021
* University of Wisconsin = 3123

We also must carve out private IP addresses for these hosts to communicate with,
anything defined in RFC 1918 will do. For the sake of this example, we will use the
10.10.200.0/24 subnet on either end. We first look at the Texas Tech University
end. We need to associate one of the server’s interfaces with the VLAN. In this case
we know that the server is connected to the switch that is now connected to the
circuit via Ethernet interface 0 (e.g. etho). We do the following:

sudo /sbin/vconfig add ethO 3021
sudo /sbin/ifconfig eth0.3021 10.10.200.10/24 up
sudo /sbin/ifconfig eth0.3021 txqueuelen 10000

This adds the VLAN to the interface, assigns an IP address (10.10.200.10) and
network information, and creates a queue for data transmission. Establishing the
txqueuelen is very important; this is required for te control. Failure to do this will
result in tc being unable to affect the traffic on the VLAN. Then we turn our
attention to the University of Wisconsin end, which is very similar:

sudo /sbin/vconfig add ethO 3123
sudo /sbin/ifconfig eth0.3123 10.10.200.20/24 up
sudo /sbin/ifconfig eth0.3123 txqueuelen 10000

The hosts are now established on the circuit. We can do a simple test to check
connectivity:

ping -¢ 5 10.10.200.10

PING 10.10.200.10 (10.10.200.10) 56(84) bytes of data.

64 bytes from 10.10.200.10: icmp_seq=1 ttl=64 time=36.3 ms
64 bytes from 10.10.200.10: icmp_seq=2 ttl=64 time=36.3 ms
64 bytes from 10.10.200.10: icmp_seq=3 ttl=64 time=36.2 ms
64 bytes from 10.10.200.10: icmp_seq=4 ttl=64 time=36.3 ms
64 bytes from 10.10.200.10: icmp_seq=5 ttl=64 time=36.2 ms

--- 10.10.200.10 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt min/avg/max/mdev = 36.296/36.313/36.352/0.209 ms

We see a latency that matches the distance, and we are able to see that the subnet
definitions are correct.

4.3. Establishing TC Rules

We will establish some basic tc rules on the sender end. For the sake of this test we
will send from University of Wisconsin to Texas Tech University only, thus the rules
will be applied to the Wisconsin end. We will review the statements in order. This
first rule clears out any existing tc rules that may have been defined before. It's
always a good idea to do this.

sudo /usr/sbin/tc gdisc del dev eth0.3123 root

This second rile creates an HTB for the VLAN on our interface. This must be done
before we go any further in defining classes:

sudo /usr/sbin/tc gdisc add dev eth0.3123 handle 1: root htb

Next, we add in a class to our route queue. We make a base transfer rate of 2Gbps
(256 MBps - note that tc requires this):

sudo /usr/sbin/tc class add dev eth0.3123 parent 1l: classid 1:1 htb
rate 256mbps

Lastly, we create a filter that restricts our tc queue and class to a specific source IP
address (on the Wisconsin end):

sudo /usr/sbin/tc filter add dev eth0.3123 parent 1: protocol ip prio
16 u32 match ip src 10.10.200.20/32 flowid 1:1

We will make changes to this during experimentation, particularly to the rate.

5. Testing

We first make a baseline test between Texas Tech University and the University of
Wisconsin. This test was performed using a 1Gbps circuit, on the aforementioned
VLANSs. Note that to do this, we must remove any settings that are in place. Do be
safe; lets do this on both ends, first at Wisconsin:

sudo /usr/sbin/tc gdisc del dev eth0.3123 root
And at Texas Tech:

sudo /usr/sbin/tc gdisc del dev eth0.3021 root

We initiate a test using the nuttcp [nuttcp] tool, from the Wisconsin end, sending to
Texas Tech. The Texas Tech end is running a server:

[dynes@fdt-texastech ~]$ nuttcp -S -p 5679 -P 5678 --nofork

The Wisconsin end is running the client:

[dynes@fdt-wisc ~]$ nuttcp -T 30 -i 1 -p 5679 -P 5678 10.10.200.10
1.6875 MB / 1.00 sec = 14.1543 Mbps 9 retrans
1.6875 MB / 1.00 sec = 14.1558 Mbps 3 retrans
1.3750 MB / 1.00 sec = 11.5345 Mbps 0 retrans
1.9375 MB / 1.00 sec = 16.2529 Mbps 0 retrans
3.1250 MB / 1.00 sec = 26.2147 Mbps 0 retrans
1.4375 MB / 1.00 sec = 12.0585 Mbps 21 retrans
2.7500 MB / 1.00 sec = 23.0691 Mbps 0 retrans
3.2500 MB / 1.00 sec = 27.2629 Mbps 8 retrans
1.4375 MB / 1.00 sec = 12.0585 Mbps 0 retrans
2.7500 MB / 1.00 sec = 23.0688 Mbps 0 retrans
2.6250 MB / 1.00 sec = 22.0198 Mbps 37 retrans
0.5625 MB / 1.00 sec = 4.7185 Mbps 0 retrans
2.4375 MB / 1.00 sec = 20.4474 Mbps 0 retrans
3.0000 MB / 1.00 sec = 25.1658 Mbps 20 retrans
0.5000 MB / 1.00 sec = 4.1943 Mbps 0 retrans
2.6250 MB / 1.00 sec = 22.0197 Mbps 0 retrans
3.3750 MB / 1.00 sec = 28.3118 Mbps 13 retrans
1.8125 MB / 1.00 sec = 15.2046 Mbps 0 retrans
3.3125 MB / 1.00 sec = 27.7867 Mbps 0 retrans
3.8125 MB / 1.00 sec = 31.9824 Mbps 0 retrans
5.7500 MB / 1.00 sec = 48.2347 Mbps 0 retrans
3.4375 MB / 1.00 sec = 28.8354 Mbps 14 retrans
3.3125 MB / 1.00 sec = 27.7872 Mbps 0 retrans
4.5625 MB / 1.00 sec = 38.2728 Mbps 23 retrans
1.5625 MB / 1.00 sec = 13.1071 Mbps 0 retrans
3.2500 MB / 1.00 sec = 27.2630 Mbps 0 retrans
4.3125 MB / 1.00 sec = 36.1759 Mbps 23 retrans
1.8750 MB / 1.00 sec = 15.7287 Mbps 0 retrans
3.3125 MB / 1.00 sec = 27.7880 Mbps 0 retrans
4.1875 MB / 1.00 sec = 35.1252 Mbps 0 retrans

83.7159 MB / 30.45 sec = 23.0658 Mbps 0 %TX 0 %RX 171 retrans 36.69 msRTT

The performance does not look good considering that we had requested 1 Gbps
speeds on the circuit. We see retransmissions (e.g. TCP is struggling for some
reason), and generally low throughput. Using the tools tcpdump [TCPDump] and
teptrace [TCPTrace] we can capture what is going on with this particular transfer.
The following graph shows a graphical representation of this transfer:

®00 X/ xplot

sequence number

ence graph)

1440000000

1400000000

Figure 5 - TCPDump of 1Gbps Circuit Testing Using nuttcp

This graph plots sequence number over time, e.g. a linear graph indicates smooth
sailing from a transmission perspective. The blips of activity are related to the
trouble we saw with nuttcp; each indicates a stall in the process. Zooming in further
on some of the purple points in Figure 6, we see the following:

e 00 X/ xplot

ce nunber 10.40.1

1417400000

07,1000 07,1500

Figure 6 - Zoomed View of Data Retransmission

This indicates stalls or drops of data packets, which delays TCP. The sending end
compensates by trying to recover with sending duplicate data into the network,
which stalls things further. We end up in a continuous cycle, which reduces our
throughput. We have surmised that this is being caused by a two factors:

* Low buffering (128K) on some of the switches in the path
* QoS provided by the switches in the path

With this in mind, we institute a tc rule that will limit our throughput to 900Mbps
(under our reservation of 1 Gbps). Note that this is done on the Wisconsin side:

sudo /usr/sbin/tc gdisc del dev eth0.3123 root

sudo /usr/sbin/tc gdisc add dev eth0.3123 handle 1: root htb

sudo /usr/sbin/tc class add dev eth0.3123 parent 1l: classid 1:1 htb
rate 112.5mbps

sudo /usr/sbin/tc filter add dev eth0.3123 parent 1: protocol ip prio
16 u32 match ip src 10.10.200.20/32 flowid 1:1

After adding this rule, we run the client again, and see the following performance:

[dynes@fdt-wisc ~]$ nuttcp
2.1875 MB
8.3125 MB

28.3125 MB
99.1875 MB
108.5000 MB
108.4375 MB
108.4375 MB
108.4375 MB
108.3125 MB
108.3750 MB
108.3750 MB
108.2500 MB
108.3750 MB
108.3125 MB

T 30 -i 1 -p 5679 -P 5678 10.10.200.10
18.3486 Mbps retrans
69.7281 Mbps retrans

237.5170 Mbps retrans
832.0559 Mbps retrans
910.1831 Mbps retrans
909.6078 Mbps retrans
909.6706 Mbps retrans
909.6215 Mbps retrans
908.5747 Mbps retrans
909.1354 Mbps retrans
909.1363 Mbps retrans
908.0605 Mbps retrans
909.1218 Mbps retrans
908.5911 Mbps retrans

108.3125 MB 908.5902 Mbps retrans
108.4375 MB 00 sec 909.6133 Mbps retrans
108.5000 MB 00 sec 910.1731 Mbps retrans
108.4375 MB 00 sec 909.6533 Mbps retrans
108.3750 MB 00 sec 909.1199 Mbps retrans
108.4375 MB 00 sec 909.6388 Mbps retrans
108.3750 MB 00 sec 909.1154 Mbps retrans
108.4375 MB 00 sec 909.6406 Mbps retrans

108.3750 MB
108.3125 MB
108.4375 MB
108.5000 MB
108.3125 MB
108.5000 MB
108.4375 MB
108.3125 MB

retrans
retrans
retrans
retrans
retrans
retrans
retrans
retrans

909.1154 Mbps
908.5911 Mbps
909.6388 Mbps
910.1640 Mbps
908.5593 Mbps
910.1967 Mbps
909.6397 Mbps
908.5911 Mbps

A N O N e N N N N N NN
RFRRPRRRRRRRRERRRERRRERRERRREBRRERRRERRERRRRR R R
o
o
]

o
Q
L T [| (| | | (O (| | (| | | [| | | (| Y | [I | B
[eNeNeNoNeoNoNoNoNoNoNo oo No o No o oo No o No o Neo o No No ol S =

2965.6678 MB

~
w
o
=
N
10}
o
Q
[}

825.9052 Mbps 3 %TX 8 %RX 1 retrans 36.73 msRTT

This can be viewed graphically using the same tcpdump and tcptrace analysis:

8 00 | xplot

Figure 7 - nuttcp Performance After Use of tc

In Figure 7 we see a transfer that has much retransmission activity to start, before
finally reaching a steady state of performance for the remainder of the transfer. We
achieve an average that is very close to the original 900Mbps-shaping request, and
over time we would see it come closer to this threshold. We next zoom in on the
start of the transfer in Figure 8.

en0on \| xplot

1050000000

1000000000

Figure 8 - Zoom of Start to nuttcp Transfer

This transfer demonstrates a loss event during the TCP slow start phase, and then
minor shaping activities to smooth the flow and control the sending window for an
additional amount of time. We next will try tc rule that will limit our throughput to
1Gbps, equal to our reservation. Note that this is done on the Wisconsin side:

sudo /usr/sbin/tc gdisc del dev eth0.3123 root

sudo /usr/sbin/tc gdisc add dev eth0.3123 handle 1: root htb

sudo /usr/sbin/tc class add dev eth0.3123 parent 1l: classid 1:1 htb
rate 128mbps

sudo /usr/sbin/tc filter add dev eth0.3123 parent 1: protocol ip prio
16 u32 match ip src 10.10.200.20/32 flowid 1:1

We observe the following performance characteristics:

[dynes@fdt-wisc ~]$ nuttcp -T 30 -i 1 -p 5679 -P 5678 10.10.200.10

2.8750 MB 00 sec 24.1153 Mbps retrans
6.8125 MB 00 sec 57.1492 Mbps retrans
15.1250 MB 00 sec 126.8811 Mbps retrans
17.1875 MB 00 sec 144.1652 Mbps retrans

19.0625 MB
22.5000 MB
29.4375 MB
31.9375 MB
15.8125 MB
21.5625 MB
24.6875 MB
30.2500 MB
39.7500 MB
44.0000 MB
21.6875 MB
29.3750 MB
32.1250 MB
37.8750 MB

retrans
retrans
retrans
retrans
retrans
retrans
retrans
retrans
retrans
retrans
retrans
retrans
retrans
retrans

159.9147 Mbps
188.7422 Mbps
246.9406 Mbps
267.9114 Mbps
132.6459 Mbps
180.8795 Mbps
207.0925 Mbps
253.7435 Mbps
333.4735 Mbps
369.1102 Mbps
181.9228 Mbps
246.4070 Mbps
269.4830 Mbps
317.7239 Mbps

46.9375 MB 00 sec 393.7466 Mbps retrans
57.3750 MB 00 sec 481.2993 Mbps retrans
31.8750 MB 00 sec 267.3751 Mbps retrans
33.9375 MB 00 sec 284.6907 Mbps retrans
36.8750 MB 00 sec 309.3503 Mbps retrans
41.1250 MB 00 sec 344.9805 Mbps retrans
48.9375 MB 00 sec 410.5187 Mbps retrans
18.3750 MB 00 sec 154.1303 Mbps retrans

27.8125 MB
30.0000 MB
35.6875 MB
44.0625 MB

retrans
retrans
retrans
retrans

233.2900 Mbps
251.6952 Mbps
299.3684 Mbps
369.6230 Mbps

A N O N N N N T N N N N NN
R R RERRRRRBRRRERRERRRBRERERBRRRRR R B[R BB 2 22 -2

OO0 O0OWOOOOPROODODODOOJNTOOOOONOOOO WWO

906.7649 MB

~
w
o
[\S]
[ee]
n
(1]
Q
[

251.2284 Mbps 0 %TX 3 %RX 37 retrans 36.71 msRTT

We now turn to tcpdump and tcptrace again so we can see the graphical view of the
output:

1200000000

800000000

Figure 9 - Using tc with 1Gbps rate on a 1Gbps circuit

Figure 9 shows constant stalls, most likely due to the same factors we observed
before related to the size of buffers and QoS implemented in OSCARS.

Additional experimentation for circuits of higher reservations has shown that this
general pattern is repeated, and it is recommended that tc settings aim for 90% -
92% of the available bandwidth to reduce the chance of QoS impacting performance
of TCP flows.

6. Conclusion

VC implementations offer the useful and powerful paradigm of establishing point-
to-point Layer 2 connections (VLANs) between participating endpoints. These
connections offer a litany of positive features, including stable latency and
guaranteed bandwidth delivered via QoS mechanisms.

Existing applications that use protocols such as TCP require no adaption to use
these new networking paradigms by default; however, it has been observed that
performance is subjective due to the environment created using QoS. These
mechanisms can force packets into an out-of-order state due to queuing, or may
have limited buffering to handle bursty behavior; both situations will reduce overall
TCP throughput.

Using simple host based solutions, such as the Linux tc program, we can implement
mechanisms that smooth and control TCP traffic on an end to end basis. These

controls make it possible to use a high percentage (90-92% in practice) of
bandwidth reservations, without needing to modify existing applications.

It is recommended that users of VC infrastructure follow these steps when utilizing
resources.

7. References

[OSCARS] - On-Demand Secure Circuits and Advance Reservation System (OSCARS),
http://www.es.net/services/virtual-circuits-oscars/

[OSCARSQoS] - Z. Yan, M. Veeraraghavan, C. Tracy, C. Guok, On how to provision
Quality of Service (QoS) for large dataset transfers. January 2013.

[DYNES] - Dynamic Network System (DYNES),
http://www.internet2.edu/ion/dynes.html

[ION] - Internet2 ION (Interoperable On-demand Network) Service,
http://www.internet2.edu/ion/

[Fasterdata] - ESnet Fasterdata, http://fasterdata.es.net

[TCman] - tc(8) - Linux man page, http://linux.die.net/man/8/tc

[nuttcp] - Phil Dykstra's nuttcp quick start guide,
http://www.wcisd.hpc.mil /nuttcp /Nuttcp-HOWTO.html

[TCPDump] - TCPDump, http://www.tcpdump.org

[TCPTrace] - TCPTrace, http://www.tcptrace.org

