
Bulk Data Transfer Techniques for
High-Speed Wide-Area Networks

Brian L. Tierney
ESnet

Lawrence Berkeley National Laboratory

http://fasterdata.es.net/
(updated Sept 24, 2009)

Why
does the
Network
seem so
slow?

Slide from
Matt Mathis, PSC

•  This talk will cover:
–  Some Information to help you become a “wizard”
–  Work being done so you don’t have to be a wizard

•  Goal of this talk:
–  Help you fully optimize wide area bulk data transfers

•  or help your users do this

•  Outline
–  TCP Issues
–  Bulk Data Transfer Tools
–  Network Monitoring Tools
–  New TCP Stacks

•  how they help with, but not eliminate, the “wizard gap”

•  10 Mbps network : 300 hrs (12.5 days)
•  100 Mbps network : 30 hrs
•  1 Gbps network : 3 hrs
•  10 Gbps network : 20 minutes

–  need fast disk array for this

•  Compare these speeds to:
–  USB 2.0 portable disk

•  60 MB/sec (480 Mbps) peak
•  20 MB/sec (160 Mbps) reported on line
•  5-10 MB/sec reported by colleagues
•  15-40 hours to load 1 Terabyte

This table available at http://fasterdata.es.net

•  The term “Network Throughput” is vague and should be avoided
–  Capacity: link speed

•  Narrow Link: link with the lowest capacity along a path
•  Capacity of the end-to-end path = capacity of the narrow link

–  Utilized bandwidth: current traffic load
–  Available bandwidth: capacity – utilized bandwidth

•  Tight Link: link with the least available bandwidth in a path
–  Achievable bandwidth: includes protocol and host issues

45 Mbps 10 Mbps 100 Mbps 45 Mbps

Narrow Link
Tight Link

source sink

•  Latency: time to send 1 packet from the source to
the destination

•  RTT: Round-trip time
•  Bandwidth*Delay Product = BDP

–  The number of bytes in flight to fill the entire path
–  Example: 100 Mbps path; ping shows a 75 ms RTT

•  BDP = 100 * 0.075 = 7.5 Mbits (940 KBytes)

•  LFN: Long Fat Networks
–  A network with a large BDP

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

•  Congestion window (CWND) = the number of packets the sender is
allowed to send
–  The larger the window size, the higher the throughput

•  Throughput = Window size / Round-trip Time

•  TCP Slow start
–  exponentially increase the congestion window size until a packet is lost

•  this gets a rough estimate of the optimal congestion window size

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

•  Congestion avoidance
–  additive increase: starting from the rough estimate, linearly increase the

congestion window size to probe for additional available bandwidth
–  multiplicative decrease: cut congestion window size aggressively if a

timeout occurs

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

•  Fast Retransmit: retransmit after 3 duplicate acks (got 3 additional
packets without getting the one you are waiting for)
–  this prevents expensive timeouts

–  no need to go into “slow start” again

•  At steady state, CWND oscillates around the optimal window size

•  With a retransmission timeout, slow start is triggered again

Data Packet

Acknowledgement

Animated Slide from Globus Project, ANL

Animated Slide from Globus Project, ANL

•  Getting good TCP performance over high-
latency high-bandwidth networks is not easy!

•  You must keep the TCP window full
–  the size of the window is directly related to the

network latency

•  Easy to compute max throughput:
–  Throughput = buffer size / latency
–  eg: 64 KB buffer / 40 ms path = 1.6 KBytes (12.8

Kbits) / sec

•  It is critical to use the optimal TCP send and receive
socket buffer sizes for the link you are using.
–  Recommended size to fill the pipe

•  2 x Bandwidth Delay Product (BDP)

–  Recommended size to leave some bandwidth for others
•  around 20% of (2 x BPB) = .4 * BDP

•  Default TCP buffer sizes are way too small for today’s
high speed networks
–  Until recently, default TCP send/receive buffers were

typically 64 KB
–  tuned buffer to fill LBL to BNL link: 10 MB

•  150X bigger than the default buffer size

–  with default TCP buffers, you can only get a small % of the
available bandwidth!

•  Optimal Buffer size formula:
–  buffer size = 20% * (2 * bandwidth * RTT)

•  ping time (RTT) = 50 ms

•  Narrow link = 500 Mbps (62 MBytes/sec)
–  e.g.: the end-to-end network consists of all 1000 BT

ethernet and OC-12 (622 Mbps)

•  TCP buffers should be:
–  .05 sec * 62 * 2 * 20% = 1.24 MBytes

•  To solve the buffer tuning problem, based on work at
LANL and PSC, Linux OS added TCP Buffer autotuning
–  Sender-side TCP buffer autotuning introduced in Linux 2.4
–  Reciever-side autotuning added in Linux 2.6

•  Most OS’s now include TCP autotuning
–  TCP send buffer starts at 64 KB
–  As the data transfer takes place, the buffer size is

continuously re-adjusted up max autotune size

•  Current OS Autotuning default maximum buffers
–  Linux 2.6: 256K to 4MB, depending on version
–  FreeBSD 7: 256K
–  Windows Vista: 16M
–  Mac OSX 10.5: 8M

•  Linux 2.6
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
autotuning min, default, and max number of bytes to use
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

•  FreeBSD 7.0
net.inet.tcp.sendbuf_auto=1
net.inet.tcp.recvbuf_auto=1
net.inet.tcp.sendbuf_max=16777216
net.inet.tcp.recvbuf_max=16777216

•  Windows Vista
netsh interface tcp set global autotunninglevel=normal

–  max buffer fixed at 16MB

•  OSX 10.5 (“Self-Tuning TCP)
kern.ipc.maxsockbuf=16777216

•  For more info, see: http://fasterdata.es.net/TCP-Tuning/

•  LBL to (50% of pipe)
–  SLAC (RTT = 2 ms, narrow link = 1000 Mbps) : 256 KB
–  BNL: (RTT = 80 ms, narrow link = 1000 Mbps): 10 MB
–  CERN: (RTT = 165 ms, narrow link = 1000 Mbps): 20.6 MB

•  Note: default buffer size is usually only 64 KB, and
default maximum autotuning buffer size for is often only
256KB
–  e.g.: FreeBSD 7.2 Autotuning default max = 256 KB
–  10-150 times too small!

•  Home DSL, US to Europe (RTT = 150, narrow link = 2
Mbps): 38 KB
–  Default buffers are OK.

Path = LBL
to CERN
(Geneva)
OC-3, (in
2000), RTT
= 150 ms

average
BW =
30 Mbps

RTT = 70 ms

graph from Tom Dunigan, ORNL

•  Potentially unfair
•  Places more load on

the end hosts
•  But they are

necessary when you
don’t have root
access, and can’t
convince the
sysadmin to increase
the max TCP buffers

graph from Tom Dunigan, ORNL

•  To optimize TCP throughput, do the following:
–  Use a newer OS that supports TCP buffer autotuning
–  increase the maximum TCP autotuning buffer size
–  use a few parallel streams if possible

•  But also, try to ‘play nice’:
–  Leave some bandwidth for others.
–  e.g.: Don’t try to completely fill your networks

1000BT uplink
–  Good ‘rule of thumb’:

•  Try for 100-200 Mbps per stream, and use around 4 streams

•  Using the right tool is very important
–  scp / sftp : 10 Mbps

•  standard Unix file copy tools

•  fixed 1 MB TCP window in openSSH
⇒ only 64 KB in openssh versions < 4.7

–  ftp : 400-500 Mbps
•  assumes TCP buffer autotuning

–  parallel stream FTP: 800-900 Mbps

•  Don’t use scp to copy large
files across a WAN!
–  scp has its own internal 1MB

buffering/windowing that
prevents it from ever being able
to fill LFNs!

•  Explanation of problem and
openssh patch solution from
PSC:
–  http://www.psc.edu/networking/

projects/hpn-ssh/

•  Uses same code as scp, so don't use sftp WAN
transfers unless you have installed the HPN patch from
PSC

•  But even with the patch, SFTP has yet another flow
control mechanism
–  By default, sftp limits the total number of outstanding

messages to 16 32KB messages.
–  Since each datagram is a distinct message you end up with a

512KB outstanding data limit.
–  You can increase both the number of outstanding messages

('-R') and the size of the message ('-B') from the command line
though.

•  Sample command for a 128MB window:
–  sftp -R 512 -B 262144 user@host:/path/to/file outfile

•  GridFTP from ANL has everything needed to fill the network pipe
–  Buffer Tuning
–  Parallel Streams

•  Supports multiple authentication options
–  anonymous
–  ssh (available in starting with Globus Toolkit version 4.2)
–  X509

•  Ability to define a range of data ports
–  helpful to get through firewalls

•  Sample Use:
–  globus-url-copy -p 4

sshftp://data.lbl.gov/home/mydata/myfile
file://home/mydir/myfile

•  Available from: http://www.globus.org/toolkit/downloads/

?
Clients

Data Storage
Interfaces
(DSI)
 -POSIX
 -SRB
 -HPSS
 -NEST

GridFTP Server
Separate control, data
Striping, fault tolerance

Metrics collection
Access control

XIO Drivers
 -TCP
 -UDT (UDP)
 -Parallel
 streams
 -GSI
 -SSH

Client Interfaces
 Globus-URL-Copy

 C Library
 RFT (3rd party)

File
Systems

I/O
Network

www.gridftp.org

•  ssh authentication option
–  Not all users need or want to deal with X.509 certificates
–  Solution: Use SSH for Control Channel

•  Data channel remains as is, so performance is the same
–  see http://fasterdata.es.net/gridftp.html for a quick start guide

•  Optimizations for small files
–  Concurrency option (-cc)

•  establishes multiple control channel connections and transfer multiple files
simultaneously.

–  Pipelining option:
•  Client sends next request before the current completes

–  Cached Data channel connections
•  Reuse established data channels (Mode E)
•  No additional TCP or GSI connect overhead

•  Support for UDT protocol

•  new command line option for globus-url-copy, "-nlb”
–  nlb = NetLogger bottleneck
–  Uses NetLogger libraries for analysis of network and disk I/O

•  http://acs.lbl.gov/NetLogger

•  Possible "Bottleneck:" results are:
–  network: somewhere in the network
–  disk read: sender's disk

–  disk write: receiver's disk

–  unknown: disk/network are about the same and/or highly
variable

•  Sample Output:

Total instantaneous throughput:
 disk read = 1235.7 Mbits/s
 disk write = 2773.0 Mbits/s
 net read = 836.3 Mbits/s
 net write = 1011.7 Mbits/s
Bottleneck: network

•  Ignore the "net write" value
–  the time to write to the network

is strongly influenced by
system and TCP buffer
artifacts.

•  instantaneous throughput is
the average # of bytes
divided by the time spent
blocking on the system call.

•  instantaneous throughputs
are higher than the overall
throughput of the transfer:
–  does not include the time

waiting for data to be available

–  primarily useful for comparison
and not as absolute numbers

•  -nlb not enabled by default
–  use ./configure --enable-netlogger

–  additional server configuration flags needed
–  instructions at:

•  http://www.cedps.net/index.php/Gridftp-netlogger

•  bbftp (from the HEP “Babar”) project also everything
needed to fill the network pipe
–  Buffer Tuning

–  Parallel Streams

•  Supports ssh authentication options

•  Supports on-the-fly compression
•  Sample Use:

–  bbftp -p 4
bbftp://data.lbl.gov/home/mydata/myfile
file://home/mydir/myfile

•  Available from: http://doc.in2p3.fr/bbftp/

•  bbcp: http://www.slac.stanford.edu/~abh/bbcp/
–  supports parallel transfers and socket tuning
–  bbcp -P 4 -v -w 2M myfile remotehost:filename

•  lftp: http://lftp.yar.ru/
–  parallel file transfer, socket tuning, HTTP transfers, and more.

–  lftp -e 'set net:socket-buffer 4000000; pget -n 4 [http|ftp]://site/
path/file; quit'

•  axel: http://wilmer.gaast.net/main.php/axel.html
–  simple parallel accelerator for HTTP and FTP.

–  axel -n 4 [http|ftp]://site/file

•  There are a number of nice browser plugins that can be
used to speed up web-initiated data transfers
–  all support parallel transfers

•  Firefox add-on (All OSes):
–  DownThemAll : http://www.downthemall.net
–  this is my favorite: probably the best/simplest solution

•  For Linux:
–  aria: http://aria-rpm.sourceforge.net

•  For Windows:
–  FDM: http://www.freedownloadmanager.org
–  Stardownloader: http://www.stardownloader.com/

•  For OSX:
–  Speed Download: http://www.yazsoft.com/ ($25)

•  Open Source:
–  http://filezilla-project.org/

–  includes client and server

•  Features:
–  ability to transfer multiple files in parallel

•  HPSS Tools: HSI and pftp
–  both support buffer tuning and parallel transfers

•  per destination buffer tuning must be done by HPSS admin

•  Berkeley Storage Manager (BestMan) from LBNL
–  supports buffer tuning and parallel transfers

–  https://sdm.lbl.gov/bestman/

•  Irods from UNC
–  https://www.irods.org/index

•  Firewalls
–  many firewalls can’t handle 1 Gbps flows

•  designed for large number of low bandwidth flow

•  some firewalls even strip out TCP options that allow for TCP buffers > 64
KB

•  Disk Performance
–  In general need a RAID array to get more than around 500

Mbps

•  Other subtle issues start to come up at speeds above
500 Mbps
–  Router buffering: http://fasterdata.es.net/cisco.html

–  TCP congestion control, disk tuning, etc.

•  First, determine which security model you require
–  anonymous: (e.g.: FTP, HTTP) anyone can access the data
–  simple password: (e.g.: FTP, HTTP) most sites no longer allow

this method since the password can be easily captured
–  password encrypted: (e.g.: bbcp, bbftp, GridFTP) control

channel is encrypted, but data is unencrypted
–  everything encrypted: (e.g.: scp, sftp, GridFTP, HTTPS-based

web server) both control and data channels are encrypted

•  Most open science projects seem to prefer option #3.
•  If you require option #4, tools that perform well over a

WAN are limited to:
–  GridFTP with X509 keys,
–  HPN-patched versions of scp/sftp.

>traceroute pcgiga.cern.ch
traceroute to pcgiga.cern.ch (192.91.245.29), 30 hops max, 40 byte packets
 1 ir100gw-r2.lbl.gov (131.243.2.1) 0.49 ms 0.26 ms 0.23 ms
 2 er100gw.lbl.gov (131.243.128.5) 0.68 ms 0.54 ms 0.54 ms
 3 198.129.224.5 (198.129.224.5) 1.00 ms *d9* 1.29 ms

 4 lbl2-ge-lbnl.es.net (198.129.224.2) 0.47 ms 0.59 ms 0.53 ms
 5 snv-lbl-oc48.es.net (134.55.209.5) 57.88 ms 56.62 ms 61.33 ms
 6 chi-s-snv.es.net (134.55.205.102) 50.57 ms 49.96 ms 49.84 ms
 7 ar1-chicago-esnet.cern.ch (198.124.216.73) 50.74 ms 51.15 ms 50.96 ms
 8 cernh9-pos100.cern.ch (192.65.184.34) 175.63 ms 176.05 ms 176.05 ms
 9 cernh4.cern.ch (192.65.185.4) 175.92 ms 175.72 ms 176.09 ms

10 pcgiga.cern.ch (192.91.245.29) 175.58 ms 175.44 ms 175.96 ms

Can often learn about the network from the router names:

 ge = Gigabit Ethernet

 oc48 = 2.4 Gbps (oc3 = 155 Mbps, oc12=622 Mbps)

•  iperf : nice tool for measuring end-to-end TCP/UDP performance
–  http://sourceforge.net/projects/iperf
–  Can be quite intrusive to the network

•  Example:
–  Server: iperf -s -w 2M
–  Client: iperf -c hostname -i 2 -t 20 -l 128K -w 2M

Client connecting to hostname
[ID] Interval Transfer Bandwidth
[3] 0.0- 2.0 sec 66.0 MBytes 275 Mbits/sec
[3] 2.0- 4.0 sec 107 MBytes 451 Mbits/sec
[3] 4.0- 6.0 sec 106 MBytes 446 Mbits/sec
[3] 6.0- 8.0 sec 107 MBytes 443 Mbits/sec
[3] 8.0-10.0 sec 106 MBytes 447 Mbits/sec
[3] 10.0-12.0 sec 106 MBytes 446 Mbits/sec
[3] 12.0-14.0 sec 107 MBytes 450 Mbits/sec
[3] 14.0-16.0 sec 106 MBytes 445 Mbits/sec
[3] 16.0-24.3 sec 58.8 MBytes 59.1 Mbits/sec
[3] 0.0-24.6 sec 871 MBytes 297 Mbits/sec

•  Nice tools from Georgia Tech:
–  pathrate: measures the capacity of the narrow link
–  pathload: measures the available bandwidth

•  Both work pretty well.
–  pathrate can take a long time (up to 20 minutes)
–  These tools attempt to be non-intrusive

•  Open Source; available from:
–  http://www.pathrate.org/

•  A common source of trouble with Ethernet networks is
that the host is set to full duplex, but the Ethernet switch
is set to half-duplex, or visa versa.

•  Most newer hardware will auto-negotiate this, but with
some older hardware, auto-negotiation sometimes fails
–  result is a working but very slow network (typically only 1-2

Mbps)
–  best for both to be in full duplex if possible, but some older

100BT equipment only supports half-duplex

•  NDT is a good tool for finding duplex issues:
–  http://e2epi.internet2.edu/ndt/

•  tcpdump: dump all TCP header information for a specified
source/destination
–  http://www.tcpdump.org/

•  tcptrace: format tcpdump output for analysis using xplot
–  http://www.tcptrace.org/

•  Sample use:
 tcpdump -s 100 -w /tmp/tcpdump.out host hostname
 tcptrace -Sl /tmp/tcpdump.out
 xplot /tmp/a2b_tsg.xpl

•  X axis is time
•  Y axis is sequence number
•  the slope of this curve gives the throughput over time.
•  xplot tool make it easy to zoom in

slide courtesy of

Rich Carlson, Internet2

•  Green Line: ACK values received from the receiver

•  Yellow Line tracks the receive window advertised from the receiver

•  Green Ticks track the duplicate ACKs received.

•  Yellow Ticks track the window advertisements that were the same as the last
advertisement.

•  White Arrows represent segments sent.

•  Red Arrows (R) represent retransmitted segments

•  Standard Ethernet packet is 1500 bytes (aka: MTU)
•  Some gigabit Ethernet hardware supports “jumbo

frames” (jumbo packet) up to 9 KBytes
–  Helps performance by reducing the number of host interrupts
–  Esnet, Internet2, and GEANT are all 9KB “jumbo-clean”

•  But many sites have not yet enabled Jumbo Frames
•  Some jumbo frame implementations do not interoperate

•  First Ethernet was 3 Mbps (1972)
•  First 10 Gbit/sec Ethernet hardware: 2001

–  Ethernet speeds increased 3000x since the 1500 byte frame was defined
–  Computers now have to work 3000x harder to fill the network

•  To see if your end-to-end path is jumbo clean:
–  ping -M do -s 8972 192.0.2.254 (FreeBSD)
–  ping -D -s 8972 192.0.2.254
–  header math: 20 bytes IP + 8 bytes ICMP + 8972 bytes payload = 9000

•  Well known fact that TCP reno does not scale to high-
speed networks

•  Average TCP congestion window = segments
–  p = packet loss rate
–  see: http://www.icir.org/floyd/hstcp.html

•  What this means:
–  For a TCP connection with 1500-byte packets and a 100 ms

round-trip time
•  filling a 10 Gbps pipe would require a congestion window of 83,333

packets,
•  a packet drop rate of at most one drop every 5,000,000,000 packets.

–  requires at most one packet loss every 6000s, or 1h:40m to
keep the pipe full

p2.1

• Many proposed alternate congestion control
algorithms:
–  BIC/CUBIC
–  HTCP: (Hamilton TCP)
–  Scalable TCP
–  Compound TCP
–  And several more

Path Linux 2.4

Un-tuned

Linux 2.4

Hand-tuned

Linux 2.6
with BIC

Linux 2.6,
no BIC

LBL to ORNL
RTT = 67 ms

10 Mbps 300 Mbps 700 Mbps 500 Mbps

LBL to PSC
RTT = 83 ms

8 Mbps 300 Mbps 830 Mbps 625
Mbps

LBL to IE
(Ireland)
RTT = 153 ms

4 Mbps 70 Mbps 560 Mbps 140 Mbps

•  Results = Peak Speed during 3 minute test
•  Must increase default max TCP send/receive buffers
•  Sending host = 2.8 GHz Intel Xeon with Intel e1000 NIC

•  BIC-TCP is included in Linux 2.6
•  results up to 100x faster than un-tuned!

TCP Results

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

time slot (5 second intervals)

M
b

it
s
/

s
e
c
o

n
d

Linux 2.6, BIC TCP

Linux 2.4

Linux 2.6, BIC off

RTT = 67 ms

Note that BIC reaches
Max throughput MUCH
faster

•  To determine current configuration:
sysctl -a | grep congestion

 net.ipv4.tcp_congestion_control = cubic
net.ipv4.tcp_available_congestion_control = cubic
reno

•  Use /etc/sysctl.conf to set to any available congested
congestion control.

•  Supported options (may need to enabled by default in
your kernel):
–  CUBIC, BIC, HTCP, HSTCP, STCP, LTCP, more..

•  Vista includes "Compound TCP (CTCP)", which is
similar to cubic on Linux.

•  To enable this, set the following:

netsh interface tcp set global congestionprovider=ctcp"

•  Consider using multiple TCP sockets for the data stream

•  Use a separate thread for each socket
•  Keep the data pipeline full

–  use asynchronous I/O
•  overlap I/O and computation

–  read and write large amounts of data (> 1MB) at a time whenever
possible

–  pre-fetch data whenever possible
•  Avoid unnecessary data copies

–  manipulate pointers to data blocks instead

•  I/O followed by
processing

•  overlapped I/O and
processing

almost a 2:1 speedup

Next IO starts
when processing
ends

remote IO

process previous
block

•  The wizard gap is starting to close (slowly)
–  If max TCP autotuning buffers are increased

•  Tuning TCP is not easy!
–  no single solution fits all situations

•  need to be careful to set TCP buffers properly
•  sometimes parallel streams help throughput, sometimes they hurt

–  Autotuning helps a lot

•  Lots of options for bulk data tools
–  Choose the one that fills your requirements
–  Don’t use unpatched scp!

•  http://fasterdata.es.net/

•  email: BLTierney@es.net

