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On a 10 Gb/s  LAN  path the impact of low packet loss rates is minimal
On a 10 Gb/s WAN path the impact of low packet loss rates is enormous

Beyond your metro area, zero loss is essentially required for performance
When global collaboration is the norm, nobody can afford to be a local-only 

resource
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https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-
update-on-bbr-00
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https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-
update-on-bbr-00
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Several papers evaluating BBRv1 and v2 exist, but must use Mininet, not real 
networks



See: https://github.com/google/bbr
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Host network settings  (everything else is Ubuntu 20 system default)
net.core.rmem_max = 536870912
net.core.wmem_max = 536870912
net.ipv4.tcp_rmem = 4096 87380 268435456
net.ipv4.tcp_wmem = 4096 65536 268435456
net.core.default_qdisc = fq
net.ipv4.tcp_no_metrics_save = 1



Host network settings  (everything else is Ubuntu 20 system default)
net.core.rmem_max = 536870912
net.core.wmem_max = 536870912
net.ipv4.tcp_rmem = 4096 87380 268435456
net.ipv4.tcp_wmem = 4096 65536 268435456
net.core.default_qdisc = fq
net.ipv4.tcp_no_metrics_save = 1
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Fig 2 in paper
Single flow, non-overlapped, Higher RTT on the right
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Figure 3 in paper
Parallel flows, Much higher RTT on right
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Figure 4 in paper
Higher RTT on right
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Figure 5 in paper
Much higher RTT on right
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BBRv2 does much better with smaller buffers
CUBIC does slightly better with large buffers
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Figure 6 in paper
Non-overlapped on left, overlapped on right
Flows are paced to 2.4G, but that still significantly over-subscribes the 

receive host
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Figure 8 in paper
similar results from the testbed, but not quite as dramatic: 4x vs 20x, 

possibly due to more buffering
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Figure 9 in paper
Paper by Cao et all in the related work section also shows CUBIC 4x faster 

than BBRv2 with very large buffers on Mininet
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Figure 12 in paper
8 flows on the left, 16 on the right
For BBRv2, parallel flows help most with RTT > 80ms
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Figure 13 in paper
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Figure 14 in paper
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Tested the params in bold
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Figure 15 in paper
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Our tests used this pscheduler command:
pscheduler task --priority 100 --format json throughput --ip-version 4 --

parallel 4 --duration PT60S --dest hostname

For more options, run: pscheduler task throughput --help
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