
1



3



On a 10 Gb/s  LAN  path the impact of low packet loss rates is minimal
On a 10 Gb/s WAN path the impact of low packet loss rates is enormous

Beyond your metro area, zero loss is essentially required for performance
When global collaboration is the norm, nobody can afford to be a local-only 

resource

4



5



https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-
update-on-bbr-00

7



https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-
update-on-bbr-00

8



9



10



Several papers evaluating BBRv1 and v2 exist, but must use Mininet, not real 
networks



See: https://github.com/google/bbr

13



Host network settings  (everything else is Ubuntu 20 system default)
net.core.rmem_max = 536870912
net.core.wmem_max = 536870912
net.ipv4.tcp_rmem = 4096 87380 268435456
net.ipv4.tcp_wmem = 4096 65536 268435456
net.core.default_qdisc = fq
net.ipv4.tcp_no_metrics_save = 1



Host network settings  (everything else is Ubuntu 20 system default)
net.core.rmem_max = 536870912
net.core.wmem_max = 536870912
net.ipv4.tcp_rmem = 4096 87380 268435456
net.ipv4.tcp_wmem = 4096 65536 268435456
net.core.default_qdisc = fq
net.ipv4.tcp_no_metrics_save = 1



16





18



Fig 2 in paper
Single flow, non-overlapped, Higher RTT on the right

19



Figure 3 in paper
Parallel flows, Much higher RTT on right

20



Figure 4 in paper
Higher RTT on right

21



Figure 5 in paper
Much higher RTT on right

22



BBRv2 does much better with smaller buffers
CUBIC does slightly better with large buffers

23



Figure 6 in paper
Non-overlapped on left, overlapped on right
Flows are paced to 2.4G, but that still significantly over-subscribes the 

receive host

25



Figure 8 in paper
similar results from the testbed, but not quite as dramatic: 4x vs 20x, 

possibly due to more buffering

26



Figure 9 in paper
Paper by Cao et all in the related work section also shows CUBIC 4x faster 

than BBRv2 with very large buffers on Mininet

27



Figure 12 in paper
8 flows on the left, 16 on the right
For BBRv2, parallel flows help most with RTT > 80ms

28



Figure 13 in paper

29



Figure 14 in paper

30



Tested the params in bold

31



Figure 15 in paper

32



33



34



35





Our tests used this pscheduler command:
pscheduler task --priority 100 --format json throughput --ip-version 4 --

parallel 4 --duration PT60S --dest hostname

For more options, run: pscheduler task throughput --help



38



39



40



41



42



43



44



45


