INTERNET

November 18t 2013, SC13 Network Performance Tutorial
Jason Zurawski — Internet2/ESnet

Performance Primer

EAgenda

* Expectations and Realities

* TCP Basics
* What We Can Determine
* The Tools
INTERNET
perfS.NAR 2-11/8/13, © 2013.ESnet; Internet2

powered J. Zurawski — zurawski@es.net

Expectations and Realties

* Setting expectations is an important part of
managing relationships with users

— As we saw from the previous motivating example,
users may have high expectations

— Operators may try to lower them

— The correct answer is somewhere in between — it

is perfectly possible to get near line rate speeds on
clean networks

Congestion is a reality that may slow things down,
architectural and traffic management solutions can

help
|N%T

Non-congestive packet loss can be completely
eliminated :

perfS@&NAR

powered zurawski@es.net

Reality Check: Capabilities

The following show current data movement application capabilities™:

e scp**
— 140 Mbps (17.5 MB/s)

* HPN patched scp, 1 disk
— 760 Mbps (95 MB/s)

* HPN patched scp, RAID disk
— 1.2 Gbps (150 MB/s)

* GridFTP, 1 stream, 1 disk
— 760 Mbps (95 MB/s)

* @GridFTP, 1 stream, RAID disk
— 1.4 Gbps (175 MB/s)

* GridFTP, 4 streams, RAID disk
— 5.4 Gbps (675 MB/s)

* GridFTP, 8 streams, RAID disk
— 6.6 Gbps (825 MB/s)

*Assumes ~50ms of Latency between hosts.
**Note that rsync, another typical application, uses SSH under
the hood

INTERNET

perfS@&NAR

powered zurawski@es.net

Reality Check: Expectations

* The following shows how long it (should™) take to transfer 1
Terabyte of data across various speed networks™*:

* 10 Mbps network :
— 300 hrs (12.5 days)

* 100 Mbps network :

— 30 hrs

* 1 Gbps network:
— 3 hrs

* 10 Gbps network :
— 20 minutes

417

Expectation Failed

*Can your network do this?
**Assumes running at 100% efficiency, no performance problems

INTERNET

perfS@&NAR

powered zurawski@es.net

EAgenda

* Expectations and Realities
* TCP Basics
What We Can Determine

The Tools

perfS.NAR 6—11/8/13, © 2013.ESnet; Internet2

powered J. Zurawski — zurawski@es.net

TCP

* Transmission Control Protocol

— One of the core protocols of the Internet Protocol
Suite (along with IP [Internet Protocol])

— This is a Transport Layer (Layer 4) protocol, IP is a
Network Layer (Layer 3) protocol.

 HTTP, SSH are built on top of this
* Constructed by V. Cerf
and B. Khan

* Reliable delivery, fairness
to all.

* What’s not to love?

perfS-.—NAR 7 -11/8/13, © 2013 ESnet; Thternd

powered J. Zurawski — zurawski@es.net

The OSI Protocols

From Computer Desktop Encyclopedia
® 2004 The Computer Language Co. Inc.

HTTP, SSH, etc.

7 Application Layer
@ Type of communication:
-mail , file transfer,

client/server.

Presentation Layer

6 Qﬁ Encryption, data conwversion:
ASCllto EBCDIC,
BCD to binary, etc.

5 Session Layer
Starts, stops session.

Maintains order.

4 Transport Layer
Ensures delivery of entire

file or message.

TCP, UDP

Dealing with Funding
Bodies

UPPER LAYERS

IPv4, IPv6, ICMP

ARP, OSPF,
Ethernet

Hetwork Layer

Routes data to different
LANs and WANs based
on network address.

Data Link (MAC) Layer

Transmits packets from
node to node based on
station address.

AN

INTERNET
Physical Layer

D 01 Elebtnies) sigreis edd cabling.
zurawski@es.net

LOWER LAYERS

perfS@&NAR

powered

13
K

TCP

* There is actually a lot not to love:

— TCP doesn’t relay when things are going wrong via the
OS Kernel (e.g. a lost packet is re-transmitted without
any knowledge to the application).

— Loss is actually “required” for TCP to work, this is how
it is able to enforce fairness (e.g. Loss means

congestion [as well as physical flaws], therefore back
off).

— No distinction between congestive and non-congestive
losses

— Not optimized for modern networks (LFN) by default.
Latency has a pretty profound effect on performance ...

— Pretty easy to use, but also pretty easy to use poorly

from an application point of view
|N%T

perfS@&NAR

powered zurawski@es.net

TCP

* Lets introduce some terms, there won’t be a quiz.

— Think about a typical application (a web browser,
or moving a file with FTP/SCP) as we discuss this.

— Imagine all of the work that goes into just
moving small amounts of data

* TCP Measurements (from some of the tools we
use):
— Always includes the end system

— Are sometimes called “memory-to-memory”
tests since they don’t involve a spinning disk

— Set expectations for well coded application

0 T %T
perfS@&NAR

powered zurawski@es.net

TCP

* There are limits of what we can measure
— TCP hides details
— In hiding the details it can obscure what is causing errors

* Many things can limit TCP throughput
— Loss
— Congestion
— Buffer Starvation

— Out of order delivery

* TCP was intentionally designed to hide all transmission
errors from the user:
— “As long as the TCPs continue to function properly and the

internet system does not become completely partitioned,
no transmission errors will affect the users.” (From IEN 129

RFC 716) D m%r

perfS@&NAR

powered zurawski@es.net

TCP — Performance Over Time

e OO0 \| xplot

sequence nunber 10,241,80,196:50483_==>_dc83, internet2,edu:8888 (time sequence graph)
4293500000 4

42330000004

42325000004

42320000004

N RR s
N I.
09326152 09;26:154 _ "% 09:26:58 09127100 09127102

)

TCP — Performance Over Time

* Graph isillustrating:

— Flow of ACKs and DATA is linear if there are
no problems

— Window size will grow over time (autotuning)

— A missing ACK will either go unnoticed
(cumulative ACKs) or stall the window if there
Is a long enough delay

— A missing data packet will need to be resent

— Timers as control when we think there has
been a misfire between client/server
IN%T

perfS@&NAR

powered zurawski@es.net

TCP — Quick Overview

* Data Packet
— Contains some header overhead, and the broken up
chunk of user data
* ACK Packet
— Acknowledge the receipt of a data packet, “cumulative”
In nature
* The “Window”

— Agreed upon range of data that can be ‘in flight’ at a
point in time. The window can’t advance till ACKs are
received for the oldest members.

* Timers

— Placed upon data packets. If we expire a timer, we
believe data is lost. We will try to resend specific packets

first, or the entire window if need be
IN%T

perfS@&NAR

powered zurawski@es.net

TCP — A Word on Window Size

* The TCP header uses a 16 bit field to report the receive
window size to the sender. Therefore, the largest window
that can be used is 2**16 = 65K bytes.

— To circumvent this problem, Section 2 of this memo defines a
new TCP option, "Window Scale", to allow windows larger than
2**16. This option defines an implicit scale factor, which is
used to multiply the window size value found in a TCP header
to obtain the true window size. (From RFC 1323, page 2, May
1992)

— Why do we see this being ignored by security devices in 20137

willard2-Tel3/2-HSBB2211;NM; Engineering;10G link to CoE Networks;Hammond;T21

800 M

o

2 Goom

8

400 m

520)
0 e

' k‘h UM JH]
oo ggde W A i

V { (v Wy
400 1 ! ! : ﬂ

W T) Y.L TR e | | ‘| v l i
v WA I" A ‘ ") 7
@R Zawidh 4\

Mon Vied Fri Sun Tue Thu Sat Mon Ved Fri Sun Tue Th Sat Mon
Inbound Current: 114.02M Average: 59.64M Min: 8.9IM Maximum: 197.53M
Total In: 19.99 TB @ 95th Percentile In (113.33 mbit in)
W Min In @ Max In
W Zero Line
W Outhound Current: 121.85M Average: 56.68M Min: 3.12M Maximum: 245.36M
Total Out: 19 T8 @ 95th Percentile Out (155.8 mbit out)
MW Min Out @ Max Out
Total In+Out: 116.97 TB

perfS@NAR

powered

INTERNET

TCP — Quick Overview

* SACK Packet

— Selective acknowledgement for a specific
missing segment

* MSS

— Maximum segment size (largest size of packets
on a given network segmen%

— 1500 or 9000 bytes (XSEDE uses 9000)
* Slow Start
— The name is a bit of a misnomer ...

— Avoid sending more data than the network is
capable of consuming. Goal is to reach a loss
(establishes window size by relying on acks)

IN%T

— Actually really aggressive ...

perfS@&NAR

powered zurawski@es.net

TCP — Quick Overview

* Congestion Control
— Process of self regulating flow speed due to loss in
the network (e.g. making it fair)
* Congestion Avoidance

— Additive-increase/Multiplicative-decrease [AIMD]
scheme to find a fair speed for a TCP flow by
adjusting the sending window. Starts low (2 x
MSS) and increase

* Fast Retransmit

— Retransmit the window after receiving 3 duplicate
ACKs for the prior numbered segment.
m%r

— Usually indicates that the data is being lost, or
delayed significantly

perfS@&NAR

powered zurawski@es.net

TCP — Quick Overview

* Congestion Control Algorithms (selectable in the
Linux Kernel, less options in things like Windows)

— RENO (Slow Start, Cong. Avoidance, Fast Retransmit,
Fast Recovery)

— Cubic (Optimized for LFN [Long Fat Networks] with
large latency, Cubic growth pattern)

— HTCP (still additive-increase/multiplicative-decrease
[AIMD], more agressive as loss decreases on high BDP
paths)

INTERNET

perfS@&NAR

powered zurawski@es.net

TCP — Now What?

* General Operational Pattern
— SYN/SYN-ACK Packets sent to initiate the stream.

— Window size starts at a fixed value (around 64k) and
may be negotiated to increase (if the hosts support
this)

— Sender application buffers up data and passes to Kernel.

Kernel processes this, and plans to send into segments
(respect the MSS) and numbers each

— Packets are sent in order from the window. Window
advances as we get ACK packets signifying the ‘lower’ part
of the window has been received.

— The flow of data and ACK packets will dictate the overall
speed of TCP for the length of the transfer
IN%T

perfS@&NAR

powered zurawski@es.net

TCP — Overview (Typical Sawtooth)

Flow 1 —
45 F

40 |
35 |

3 0 L ||l IIII JI‘l Il fl III|| ‘Ii
J) ' ! Ill

/ III '|' ' 4
25 F | J»' ! / / / / /

20 r |J

15 F f

ol |f

SJ(/

0

0 20 40 60 80 100 120 140
AZE INTERNET
perfS@&NAR

powered zurawski@es.net

TCP — Quick Overview

» The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm, Mathis, et al. still has relevance.

* TCP throughput bandwidth (BW) in congestion avoidance:

MSS

BW «
RTT * /p

Where:
MSS = Maximum Segment Size
RTT = Round Trip Time
p = Probability of packet loss

INTERNET

perfS@&NAR

powered zurawski@es.net

TCP — Data & ACK Feedback

® 00

relative time

600,000 ms

800,000 ms

10,241,80,196:50483_==>_dc83, internet2,edu:8388 (time line graph)

4369:5817(1448) ack 1 win 131760 R

F86%:8265(1448) ack 1 win 131760 R

16T6E: 10668(1448) ack 1 win 131760

13668318868 (1448) aek 1 win 131760

18969:28883(1448) ack 1 win 131760
20297:21745(1448) ack 1 win 131760

29E0%:286RA¢1448) aek 1 win 131760

36985:30833(1448) ack 1 win 131760
33803:38329(1448) ack 1 win 131760

082230888 144E) ek 1 uin BRRS

40683;4208%(1448) ack 1 win 131760

4B3E%;48888(1448) ack 1 win 131760

BREGEP:BEEES(1448) ack 1 win 131760

22-11/8/13

X\| xplot

, © 2013 ESnet, Inter

net

11:1(0) ack 5817 win 65536

11:1(0) ack 8283 win 65536

111(0) aek 19664 win BEG3E

131(0) ack 1366% win B5536

11:1(0) ack 15953 win 65536

131(0) ack 29988 win EEE3E

ack 23¢3% win 65536
ack 26983 win 65536

FiH{8) aek 3039 uin EOREE

11:1(0) ack 34777 win 65536

1:1(0) ack 37673 win 65536

11:1(0) ack 48863 win 65536

J. Zuraw®ki —

T

70
segments|

TCP — DUP ACKs + Stalling

N\ xplot

relative time 10,241,80,196:50252_==>_dc83, internet2,eduB888 (time line graph)
12.ed lin

850803 :058899(1448) ack 1 win 131760 f——o 1:1(0) ack 81B86T win 114688
859293 :558888(1448) ack 1 win 131760 — —{1:1(0) ack 819593 win 114688

060689 :560589(1448) ack 1 win 131760 1:1(0) ack 822489 win 114688

863683:563983(1448) ack 1 win 131760 1:1(0) ack 825385 win 114688

866983:568929(1448) ack 1 win 131760 1:1{0) ack 828281 win 114688

8686259:566825(1448) ack 1 win 131760 . 1:1(0) ack 831177 win 114688

870228:873168(1448) ack 1 win 131760 —1:1(0) ack 834073 win 114688

873689:578085(1448) ack 1 win 131760 11:1(0) ack 836969 win 114688

876663:57898F(1448) ack 1 win 131760 11:1(0) ack 839865 win 114688

52690%:550869(1448) ack 1 win 131760 —1:1{0) ack 842761 win 114633
1:1(0) ack 842761 win 114688
842761:844209(1448) ack 1 win 131760 R 1:1(0) ack 842761 win 114688
41:1(0) ack 842761 win 114638
11:1(0) ack 842761 win 114683
1:1(0) ack 842761 win 114688
1:1(0) ack 942761 win 114683
11:1(0) ack 842761 win 114688
1:1(0) ack 842761 win 114698
11:1(0) ack 842761 win 114688
11:1(0) ack 842761 win 114688
1:1(0) ack 942761 win 114683
1:1(0) ack 842761 win 114688

{6} ack RIB7EE uin HAEE
881857:883305(1448) ack 1 win 131760 1:1(0) ack 842761 win 114688

883305:884753(1448) ack 1 win 131760 1:1(0) ack 842761 win 114688

884753:886201(1448) ack 1 win 131760 1:1(0) ack 842761 win 114688
886201:887643(1448) ack 1 win 131760 = 1:1(0) ack 842761 win 114688

887649:889097(1448) ack 1 win 131760 = 1:1(0) ack 842761 win 114688
889097:830545(1448) ack 1 win 131760 = = = 1:1(0) ack 842761 win 114688

890545:891993(1448) ack 1 win 131760 - 1:1{0) ack 842761 win 114688

891993:89344151448; ack 1 win 131760 = 1:150} ack 842761 win 114683
893441:894883(1448) ack 1 win 131760 11:1(0) ack 842761 win 114688

894889:896337(1448) ack 1 win 131760 = 1:1(0) ack 842761 win 114688
896337:897785(1448) ack 1 win 131760 —— = . =11:1(0) ack 842761 win 114688

— —h_____\““‘-_

23 —1148/13, © 2013 ESnet, Internet2 5

TCP — Resending the Window on Loss/Stall

e OO0 X\ xplot

sequence nunber 10,241,80,196:50252_==>_dc83, internet?,edus 8888 (time sequence graph)

21034000004

2103350000 1

TN N T A N T A T

21033000004

2103250000 4

21032000004

1210315000" 24— 1348713, © 2013 ESnet, Internet2 09116213

TCP Performance: Parallel Streams

* Parallel streams can help in some situations
— TCP attempts to be “fair” and conservative
— Sensitive to loss, but more streams hedge bet

— Circumventing fairness mechanism
1 stream vs. n background: you get 1/(n+1)
X streams vs. n background: you get x/(n+x)
Example: 2 background, 1 stream: 1/3 = 33% of available resources
Example: 2 background, 8 streams: 8/10 = 80% of available resources

* There is a point of diminishing returns

* To get full TCP performance, the TCP window needs to be large
enough to accommodate the Bandwidth Delay Product
|N%r

perfS@&NAR

powered zurawski@es.net

Stumbling Blocks — Packet Loss

* Bandwidth Delay Product

— The amount of “in flight” data allowed for a TCP connection
— BDP = bandwidth * round trip time

— Example: 1Gb/s cross country, ~100ms
1,000,000,000 b/s * .1 s = 100,000,000 bits
100,000,000 / 8 = 12,500,000 bytes
12,500,000 bytes / (1024*1024) ~ 12MB

* Major OSs default to a base of 64k.
— For those playing at home, the maximum throughput with a
TCP window of 64 KByte for RTTs:
10ms = 50Mbps
25ms = 20Mbps
50ms = 10Mbps
75ms = 6.67Mbps
100ms = 5Mbps

— Autotuning does help by growing the window when
needed... =N

INTERNET

perfS@NAR

powered zurawski@es.net

Windows Tuning

* Windows TCP Settings. These can be enabled, disabled, or changed.
C:\>netsh int tcp show global
Querying active state...

TCP Global Parameters

Receive-Side Scaling State : enabled
Chimney Offload State : automatic
NetDMA State : enabled
Direct Cache Acess (DCA) : disabled
Receive Window Auto-Tuning Level : normal
Add-On Congestion Control Provider : none

ECN Capability : disabled

RFC 1323 Timestamps

disghbled
A28 INTERNET

perfS@&NAR

powered zurawski@es.net

EAgenda

* Expectations and Realities

* TCP Basics
* What We Can Determine
* The Tools
INTERNET
perfS-.-NAR 28 —11/8/13, © 2013.ESnet; Tnternet2

powered J. Zurawski — zurawski@es.net

The Metrics

* Use the correct tool for the Job

— To determine the correct tool, maybe we need to start
with what we want to accomplish ...

* What do we care about measuring?
— Latency (Round Trip and One Way)
— Jitter (Delay variation)
— Packet Loss, Duplication, out-of-orderness (transport
layer)
— Interface Utilization/Discards/Errors (network layer)
— Achievable Bandwidth (e.g. “Throughput”)
— Traveled Route

— MTU Feedback

INTERNET

perfS@&NAR

powered zurawski@es.net

Latency

* Round Trip (e.g. source to destination, and back)
— Hard to isolate the direction of a problem

— Congestion and queuing can be masked in the final
measurement

— Can be done with a single ‘beacon’ (e.g. using ICMP
responses)

* One Way (e.g. measure one direction of a transfer only)
— Direction of a problem is implicit

— Detects asymmetric behavior

— See congestion or queuing in one direction first (normal

behavior)
IN%T

— Requires ‘2 Ends’ to measure properly

perfS@&NAR

powered zurawski@es.net

Delay/Loss Plot From OWAMP

8006

perfSONAR-PS perfAdmin Delay Graph

Source: desk172.internet2.edu (207.75.164.172) -- Destination: perfsonar.uoregon.edu (128.223.3.52)

Zoome ' 5 1h 1d 5d 1lm 3m 6m

1y Max

11:42 July 08,2010

o [Dst to Src] Delay (MSec) 5493 4 [Src to Dst] Delay (MSec) 51.92 L.

T ~— e 30

122

J.
40

L
30

H.
20

G.
10

perfS@NAR

powered

31-11/8/13, © 2013.ESnet, Internet2

J. Zurawski — zurawski@es.net

Loss Observed (SRC to DST) Lost 1
packets out of 600

Loss Observed (DST to SRC) Lost
2 packets out of 600

Loss Observed (DST to SRC) Lost 1
packets out of 600

Loss Observed (DSTto SRC) Lost4
packets out of 600

Loss Observed (DST to SRC) Lost
2 packets out of 600

Loss Observed (DST to SRC) Lost
2 packets out of 600

. Loss Observed (SRC to DST) Lost 1

packets out of 600

. Loss Observed (DSTto SRC) Lost2

packets out of 600

. Loss Observed (DST to SRC) Lost

-z Ann

Latency Skew in OWAMP Data

9 O C perfSON ,

http://npw.internet2.edu/toolkit/gui/perfAdmin/delayGraph.cgiZurl=http:/ /localhost: 8085 /perfSONAR_PS /services/ pSB&key=feeb77cb498cc5653 {}

Source: head (192.168.0.1) -- Destination: red-pc1 (192.168.0.2)

09:32 January 31,2011
o ¢ [Dstto Src] Delay (MSec) -52.17 » e [Src to Dst] Delay (MSec) 70.21

200

Negative Clo
Correction

I9 am

32-11/8/13, © 201 “Internet2
J. Zurawski — zurawski@es.net

Jitter

* To Quote Wikipedia: “undesired deviation from true
periodicity”

* Computer people usually avoid the classic definition
and use “packet delay variation” (PDV) instead

* Inlayman's terms:

— Packet trains should be well spaced to aid in

processing. The sending application/host should
throttle/pace itself initially.

— Bursts can cause queuing on devices (followed by
periods of inactivity)

— Jitter is a calculation of this variation in distances

between packets. High jitter indicates things are
consistently not well spaced

perfS@&NAR

powered zurawski@es.net

INTERNET

Jitter - Example

* Packets start well spaced at the host (usually)
* Devices in the path have processing per packet

— Waiting in buffers, being processed (header info, or for
danger info [firewalls])

— Traversing switching fabric
* They don’t always end up well spaced after...

EIm

[ETm

\ Switch with \

Equally Spaced high fan infout Resulting Jitter
A28 INTERNET

perfS@&NAR

powered zurawski@es.net

Jitter - Example
Propogation Delay =

Processlng‘r \ Processing$
e Transmission Delay ——
1 1
Queuing Delay Queuing Delay

* Processing Delay: Time to process a packet
* Queuing Delay: Time spent in ingress/egress queues to device
* Transmission Delay: Time needed to put the packet on the wire

* Propagation Delay: Time needed to travel on the wire
IN%T

perfS.NAR 35-11/8/13, © 2013.ESnet, Internet2

powered J. Zurawski — zurawski@es.net

Lost/Duplicated/Out of Order Packets

* We care about these on the transport (UDP/TCP) layer for the
most part.

— Network Layer loss is a bit different (and covered in other tools)
* Loss

— Congestive (e.g. buffers are full on a device, it drops it on the
floor)

— Non-Congestive, (e.g. an error is introduced in transmission and
the garbled packet is dropped)

* Duplication

— If we don’t receive an ACK from the other side, our window may
stall and we may end up re-sending a packet.

* Out Of Order
— Packets take a different path to a destination

— Aggregation at the interface layer may shuffle up packetsin a
buffer. When they are delivered to the application they are not in

the same order, which causes stalling
INTERNET

perfS@&NAR

powered zurawski@es.net

KanREN Monitoring — When Links Die

P

15 T T T T T T T T T T T T T T T T T T

I \-lf} I I : I 1 packet
Packet loss on KSU -> WSU OWAMP ><<1$3 ﬁ:ﬁ't‘z{z
= 1808 packets

i routing change (A

B b e ¥ +

13 _
Backbone outage.
: ~10:30:AM on 3/9/2012]
12 - ¥ A]
11 E

00‘++
4
+
+

ERRERSELATALIIIAEN o amnen

B wnwsns &+
Epp++ +++

Lost:
Flagged:
] Total: 216788

INTERNET

perfS.NAR 37 -11/8/13, © 2013.ESnet, Tnternet2

powered J. Zurawski — zurawski@es.net

SNMP Metrics

* Network Layer metric.

* Lets us know what is passing through a specific
interface on a specific device

 Utilization
— How many bits, packets, etc. have passed through

* Discards

— Packets dropped due to full buffers (or physical
flaws on the device)

* Errors
— Packets that fail a checksum

perfS@&NAR

powered zurawski@es.net

Throughput? Bandwidth?

* The term “throughput” is vague
— Capacity: link speed
Narrow Link: link with the lowest capacity along a path
Capacity of the end-to-end path = capacity of the narrow link
— Utilized bandwidth: current traffic load
— Available bandwidth: capacity — utilized bandwidth
Tight Link: link with the least available bandwidth in a path

— Achievable bandwidth: includes protocol and host issues

source

O_> 45 Mbps 10 Mbps 100 Mbps

Narrow
Link

(Shaded portion shows background traffic)

perfS@&NAR

powered zurawski@es.net

BWCTL Graphs

Texas Advanced Computing Center BWCTL (Austin TX, USA) -- Destination: Vanderbilt University BWCTL (Nashville T
1,000

800
600

400

a
Q
=

200

0

ST TS FTIT TSI ITT SIS S SS
W@gq’}w@ A
R
[Source -> Destination in Mbps [l Destination -> Source in Mbps
NET
‘NAR 40-11/8/13, © 201 nternet2

— zurawski@es.net

Traveled Route

* Normally confined to the Network Layer
(although some tools available for Link Layer and

Transport layer)
* Rely on ICMP, sometimes UDP and TCP

* Use TTL tricks to send out a packet for each ‘hop’
on a route, ask for a response

* Don’t trust the latency numbers (especially with
ICMP packets). Routers process ICMP on a
different processor than ‘real’ data packets.

INTERNET

perfS@&NAR

powered zurawski@es.net

MTU Information

» 1500 Byte (total, some of this is header) is the
defacto standard for MTU

XSEDE uses “Jumbo Frames”, around 9000 bytes

— Note —its usually good to set your devices higher
(91xx) to capture ‘slush’

* If you have configured jumbo frames, and you try to
pass these packets, two things have to be true for
success:

— The entire path must be enabled

— Fragmentation has to be supported to break up the
larger packets

* If these are not true, you run into “Black Hole” issues

where packets are dropped.
m%r

perfS@&NAR

powered zurawski@es.net

EAgenda

* Expectations and Realities
* TCP Basics
What We Can Determine

The Tools

perfS.NAR 43 -11/8/13, © 2013.ESnet, Internet2

powered J. Zurawski — zurawski@es.net

B/Iapping to the Tools

* What do we care about measuring?

— Latency — Ping, OWAMP, NDT, NPAD [don’t trust
Traceroute]

— Jitter — OWAMP, UDP Iperf, UDP Nuttcp, NDT,
NPAD

— Packet Loss, Duplication, out-of-orderness -
OWAMP, UDP Iperf, UDP Nuttcp, NDT, NPAD

— Interface Utilization/Discards/Errors - SNIVIP
— Achievable Bandwidth — Iperf, Nuttcp, NDT, NPAD

— Traveled Route — Traceroute, Tracepath
— MTU Feedback — Tracepath, Ping, NDT, NPAD
m%r

perfS.NAR 44 —11/8/13, © 2013.ESnet, Internet2

powered J. Zurawski — zurawski@es.net

INTERNET
ESnet

Energy Sciences Network

Performance Primer

November 18t 2013, SC13 Network Performance Tutorial
Jason Zurawski — Internet2/ESnet

For more information, visit http://www.internet2.edu/workshops/npw

https://submissions.supercomputing.org/?page=SessionEval&id=sess118

