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Abstract—This paper reviews recent enhancements to the
Linux kernel that impact network throughput, and their potential
impact on Data Transfer Node (DTN) performance. In particular,
we explore the benefits of MSG ZEROCOPY and BIG TCP in
controlled testbed environments at AmLight and ESnet. We com-
pare performance on three different Linux kernel versions, on
Intel vs AMD processors, and over multiple round trip times. Our
results indicates that MSG ZEROCOPY, in conjunction with
packet pacing, provides up to 35% improvement in throughput,
and that Linux 6.8 provides an increase in throughput of up to
38% on WAN and 30% on LAN compared to the 5.15 kernel.
We conclude with recommendations for both host benchmarking
and production-ready DTN configurations.

I. INTRODUCTION

The Linux kernel, now over three decades old, continues to
undergo significant performance enhancements, particularly in
the context of high-speed networking. Although saturating a
10G network with a single TCP stream has become routine,
the emergence of 100G, 200G, and 400G networks is revealing
new limitations in the network stack of operating systems.

This paper provides a comprehensive review of recent
Linux kernel improvements with a focus on their impact on
Data Transfer Node (DTN [1]) performance, specifically for
network speeds of 100 Gbps and higher. In particular, we
explore the benefits of MSG ZEROCOPY [2] and BIG TCP
[3], comparing these settings for both Intel and AMD-based
systems across Linux 5.X and 6.X kernels. Furthermore, we
explore current best practices for DTN tuning, identifying
which settings remain relevant as newer kernel versions are
adopted. The goal of this paper is to be a practical guide to
those who are benchmarking and tuning a DTN for optimal
network performance. We do not cover file system perfor-
mance, which is a much bigger and more complex topic that
is even more dependent on what hardware is used.

Our study centers on the advancements introduced between
the stock Ubuntu 22.04 kernel (5.15, released in April 2022)
and the current Ubuntu 24.04 kernel (6.8, released in April
2024). We demonstrate that many performance gains can only
be realized through the careful combination of additional

tuning parameters and specific kernel capabilities. We present
test results from three Linux kernel versions, emphasizing
differences in network throughput performance. A robust test
methodology is outlined to ensure consistent and reproducible
results, verified through controlled environments on the Am-
Light and ESnet testbeds.

Notably, our experimental research extends beyond prior
studies that do not consider WAN latencies [4][5][6], rely
on emulated latencies [7], or operate at link speeds of no
more than 25 Gbps [8]. Unless explicitly stated otherwise,
all the experimental results in our work are based on 100
Gbps or faster R&E network testbeds in AmLight and the
ESnet. Another contribution of this paper is releasing all data
collected1 to foster open science and reproducible research.
The findings and practical guidelines offered in this work
are intended to assist those involved in benchmarking and
tuning DTNs for optimized performance through the provided
insights into the most recent kernel advancements and their
practical application.

The paper is organized as follows. Section II provides
background information and discusses relevant related work.
Section III presents the testing tools, methodology, and exper-
imental environment. Section IV analyzes the obtained results.
Section V provides conclusions and future work directions.

II. BACKGROUND AND RELATED WORK

A. Recent kernel enhancements

Linux 6.X kernels include many performance improve-
ments covering a wide range of areas that may impact DTN
throughput. In particular, we focus on improvements impacting
network speeds of 100 Gbps and above. Recent relevant kernel
enhancements include:

• Support for ’zerocopy’ networking, as described below
• Support for ’BIG TCP’, or TCP packets larger than 64

KB, as described below.

1https://github.com/marcosfsch/INDIS-2024
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• Driver Updates and Optimizations: The Nvidia network
drivers (formerly Mellanox) have been updated to better
support high-speed networking.

• Enhanced Use of AVX-512 [9] for Networking Tasks (on
newer Intel processors): Linux 6.x has started to leverage
these instructions for tasks such as checksum calculations
and packet processing, offering a significant speedup in
these operations, which directly impacts TCP throughput.

• Improved Buffer Management: The kernel’s memory
management has been tuned for better handling of net-
work buffers, reducing overhead and improving the effi-
ciency of data transfer operations.

• Memory Bandwidth Reduction: Efforts have been made
to reduce the memory bandwidth consumed by the
networking stack, which helps improve throughput by
freeing up resources for data transfer tasks.

• NUMA-Aware Scheduling Enhancements: On NUMA
(Non-Uniform Memory Access) systems, the scheduler
has been enhanced to make better decisions about placing
tasks on CPUs closer to the memory they access fre-
quently. This reduces memory latency, which is crucial
for networking tasks that require fast access to mem-
ory for packet processing, potentially improving TCP
throughput on large, multi-socket servers.

B. MSG ZEROCOPY

MSG ZEROCOPY [2] is a feature in Linux that allows for
more efficient data transfers between user space and kernel
space in network sockets. It enables data to be sent or received
without unnecessary copying between these spaces, reducing
CPU overhead and improving performance, especially in high-
throughput scenarios like networking applications. An alter-
nate form of “zerocopy” is the Linux sendfile call, whose
purpose is to transfer data from a file descriptor (typically
a file) to a socket directly, without moving the data to user
space. iperf3 has supported sendfile for many years, but the
newer MSG ZEROCOPY method is more general purpose.

C. BIG TCP

Generic Segmentation Offload (GSO) and Generic Receive
Offload (GRO) are standard offload techniques that use a
super-sized packet of 64KB to reduce CPU cycles and inter-
rupts in the Linux network stack. This super-sized packet will
be fragmented to the MTU size, usually 1500B or 9000B by
the NIC driver. BIG TCP [3] increases GSO/GRO packet sizes
above the standard value up to 512KB, thus providing addi-
tional reduction of CPU usage. The initial implementation of
BIG TCP was released in Linux 5.19, and supported IPv6 only.
IPv4 support was added in the 6.3 kernel. While BIG TCP
is disabled by default, it can be configured with iproute tool
(v6.2 and above). Currently, BIG TCP and zerocopy cannot be
used simultaneously without a custom built kernel. Compiling
Linux with the kernel configuration MAX SKB FRAGS=45
is required since both BIG TCP and MSG ZEROCOPY use
SKB fragments, as described in [10]. This limits the near term
viability of BIG TCP in production DTN deployments.

IPv6 supports slightly larger values for GRO/GSO. We
tested BIG TCP for both IPv4 and IPv6, but found no
significant difference, so the results reported in this paper are
for IPv4 only.

D. Flow Control

In a network that supports IEEE 802.3x flow control [11],
if the receiving host cannot keep up, it sends ’pause frames’
to the network device telling it to slow down a bit and buffer
the data. Not all networking hardware supports IEEE 802.3x,
so it is important to check this when benchmarking 100 Gbps
and above hosts.

DTNs that are designed for ingesting high-speed flows
should always be connected to network devices supporting
IEEE 802.3x. Otherwise, the NIC will likely drop packets,
as shown in Section IV. This is particularly true in a WAN
environment, as increases in hop count and path latency create
longer packet trains (groups of packets with little to no gaps
between them) that arrive at the host back-to-back. But even
in a LAN we see improvements by using pacing. When flow
control is not available on the network, you can also apply
pacing on the send host to limit the sending rate, providing
similar results, as demonstrated in our results.

E. Related Work

A number of recent publications have analyzed TCP per-
formance for data transfers of 100G and above, unveiling
current bottlenecks and presenting strategies to overcome
them. However, the literature is commonly restricted to LAN
tests, or emulated latencies and lower throughput. For example,
Cai et al. [5] present a detailed analysis of the Linux network
stack, concluding that for high-performance data transfers, the
performance bottleneck is shifting from protocol processing
to data copy. The work also points to zerocopy as a future
direction to solve part of these performance issues. Hock
et. al. [6] analyze the impact of NUMA/CPU affinity and
different strategies for placing the application and interrupt to
CPU cores, concluding that, for optimal performance results,
the applications should not be pinned to cores that handle
interrupts from the NIC. Skiadopoulos et. al. [4] present a
high-performance zero-copy NIC prototype for hardware and
software by benchmarking Linux default networking stack
with and without MSG ZEROCOPY. Their performance find-
ings are similar to our work, but limited only to LAN tests
without considering the impact of long latencies.

Other work, such as Mahmud et al [8], use real WANs but at
lower transmission rates. Their work presents insightful com-
parisons of different CCAs fairness over different router buffer
sizes and AQM algorithms on a 62ms path using the FABRIC
testbed [12][13] at 25 Gbps. Rao et. al. [7] present a study
of TCP throughput profiles with and without loss, considering
multiple congestion control algorithms, highlighting different
dynamics that BBR presents over loss and congestion. Their
tests were run on testbed that can emulate up to 376 ms RTT,
but limited to 10 Gbps.
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To the best of our knowledge, this paper is the first to
evaluate the performance of MSG ZEROCOPY and BIG TCP
at 100 Gbps and higher link speeds over multiple real WAN
latencies, providing a repeatable methodology validated on two
independent environments.

III. TESTING METHODOLOGY AND ENVIRONMENT

We run experiments over two testbeds, one on Amlight, and
one on ESnet. We ran tests in both environments to validate
the proposed methodology and strengthen our conclusions.

A. Test Consistency and Core Selection

Early in this work, we found it surprisingly hard to get
repeatable results. Much of the performance variability was
related to the CPU scheduler. By default, irqbalance distributes
NIC interrupts across all cores, and the scheduler distributes
processes across all cores as well. The performance of a
single 100G flow can vary from 20 Gbps to 55 Gbps on the
same hardware, depending on which cores and which NUMA
node get assigned. We configured our test hosts following the
standard DTN advice from [14] of disabling irqbalance and
assigning IRQs and user process cores to the correct NUMA
node. For the results presented in this work, we used the
following settings on all hosts for all tests:

set_irq_affinity_cpulist.sh 0-7 ethN
numactl -C 8-15 iperf3 (client and server)

where set_irq_affinity_cpulist.sh is a script pro-
vided by Nvidia2 to automate assigning the NIC interrupts
to a given list of CPUs. Using this method of separating
cores for IRQs from cores for iperf3 provided reasonable test
consistency without the need to explicitly map every core.

B. Test Tool Selection

We used a modified version of iperf3 v3.17 with patch
1690 [15], in addition to patch 1728 from the authors which
allows pacing above 32 Gbps [16]. Starting with v3.16, iperf3
supports multi-threaded parallel streams, which are required
for the parallel stream tests. Patch 1690 includes two new
options, inspired by the neper tool from Google [17]. The first
is the ’--skip-rx-copy’ flag, which uses the recv system call
’MSG TRUNC’ option to not actually copy the data to user
space, but discard it instead. While this would never be used by
a real application, it is useful when you want to test and tune
sender performance when the receiver is the bottleneck, which
is often the case. The second new option is the ’--zerocopy=z’
flag, which tells iperf3 to set the MSG ZEROCOPY flag in
the send system call. This option was introduced in Linux
4.17 kernel and is a more general-purpose alternative to the
more traditional sendfile method for zero-copy TCP. iperf3
also supports JSON output, simplifying the parsing of results.

2https://github.com/Mellanox/mlnx-tools/

C. Kernel Selection

We chose the following list of kernels for testing:
• Linux 5.15 : default for Ubuntu 22.04
• Linux 6.5.0: Ubuntu supported HWE3 kernel for v22.04
• Linux 6.8: default kernel for Ubuntu 24.04, available as

a beta HWE kernel for v22.04

D. Host Tuning

The website fasterdata.es.net [18][19] was used as a refer-
ence for our base tuning. We tested a wide range of settings
for sysctl, ethtool, etc, and found that only the following
settings made a difference, so all tests use these settings unless
otherwise indicated:

# /etc/sysctl.conf
net.core.rmem_max=2147483647
net.core.wmem_max=2147483647
net.ipv4.tcp_rmem=4096 131072 2147483647
net.ipv4.tcp_wmem=4096 16384 2147483647
net.ipv4.tcp_no_metrics_save=1
net.core.default_qdisc=fq
# needed for MSG_ZEROCOPY
net.core.optmem_max = 1048576
# other tuning
# increase ring buffer size (AMD hosts)
/usr/sbin/ethtool -G eth100 rx 8192 tx 8192
# turn off SMT (aka Hyper Threading)
echo off > /sys/devices/system/cpu/smt/control
# set CPU performance governor
cpupower frequency-set -g performance

The ring buffer setting above only seemed to help on AMD
hosts, not Intel hosts. tcp no metrics save is used to prevent
caching of previous CWND values. In addition to the above
settings, we used a MTU of 9000 bytes, CUBIC as TCP
congestion control algorithm, and disabled irqbalance. We
use a qdisc of ’fq’, rather than the default of ’fq codel’, as
that is recommended for better pacing in a high throughput
environment.

Another critical tuning setting was to set ’iommu=pt’, which
increased 8-stream throughput from 80 Gbps to 181 Gbps
on the ESnet AMD hosts running the 5.15 kernel. Setting
iommu=pt (IOMMU passthrough mode) can help network
throughput by reducing the overhead associated with IOMMU
(Input-Output Memory Management Unit) operations. By set-
ting iommu=pt, devices can access memory directly without
translation, which can benefit high-performance networking
devices. This direct access can lead to lower latency and higher
throughput. See [20] for information on how to configure
IOMMU.

E. AmLight Testbed

Figure 1 shows the AmLight Testbed resources used in this
paper [21]. In this environment, we were able to run LAN tests,
as well as on real WAN paths at 25ms, 54ms, and 104ms round
trip times. LAN tests were at 100 Gbps, and WAN testing was
limited to 80 Gbps to not impact production traffic. Test traffic

3Ubuntu Hardware Enablement (HWE) provides the newer kernel support
for existing Ubuntu LTS releases
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Fig. 1: AmLight testbed resources used in this work.

Fig. 2: ESnet testbed resources used in this work.

was not completely isolated from production traffic, which was
estimated to be at 16 Gbps on average during our experiments,
so it is possible that micro-bursts of packets from production
traffic may have some impact on our results, but we believe
these impacts to be minimal. The sender and receiver hosts
used in AmLight had 32 cores of type 3.1GHz/3.6GHz clock
(base/max) Intel Xeon 6346 in a dual-socket configuration,
128GB DDR4 RAM, and the NIC was Nvidia ConnectX-
5 (firmware-version: 16.35.3502). All switches are NoviFlow
WB-5132D-E based on Edgecore model Wedge 100BF-32X
running NoviWare OS.

F. ESnet Testbed

Figure 2 shows the components of the ESnet Testbed used
for the experiments described in this paper. All testbed source
and destination hosts used in the ESnet testbed had 32 cores of
type 3.5GHz/4GHz (base/max) AMD EPYC 73F3 in a dual-
socket configuration, and the NIC was Nvidia ConnectX-7.
The Edgecore model AS9716-32D switch is used to intercon-
nect all the hosts at 200G, and has a maximum shared buffer
size of 64MB.

The network switches in both testbeds do not support
flow control. Therefore, our results intend to demonstrate that

Fig. 3: Core affinity setup for the virtual testing environment
used at AmLight

pacing is especially important in environments without flow
control.

G. Test Harness Tool

Results were collected using the ESnet ’Network Test Har-
ness’ [22], which was described briefly in a previous INDIS
paper [23]. All tests were run for 60 seconds, and run a
minimum of 10 times. The test harness includes the ability
to run mpstat along with iperf3 to monitor CPU usage.

H. Virtual Testing Environment

To allow replicating scenarios between different environ-
ments without having to change the host OS/kernel, we
used a virtual machine with additional tuning that minimizes
performance overheads. For instance, at AmLight, servers run
Debian 11 (kernel 5.10), and ESnet runs Ubuntu 22.04 (kernel
5.15). To make the tests comparable we are running a Ubuntu
22.04 VM at AmLight with 16 vCPUs, 16GB RAM, using
PCI-Passthrough of the NIC and tunings to provide close
to physical performance. The required tunings are enabling
’iommu=pt’ and ’intel iommu=on’ on the host, configure
vCPU pinning so that each virtual CPU is fixed on a dedicated
physical CPU on the same NUMA as the NIC, as shown in
Figure 3

We ran an initial test to validate that the performance of
our test methodology inside a virtual machine is comparable
to running it directly on the physical server. Figure 4 shows
the results for single stream tests using the default settings,
and zerocopy plus pacing, using the same Linux distribution
(Debian 11) and kernel (5.10). All results present similar
performance, and the throughput differences are less than the
standard deviation of the tests. We also observe a similar
amount of variability between both environments.

IV. RESULTS

A. Single Stream Results

We start by examining single stream throughput. Even
though DTNs always use some form of parallel streams,
optimizing single streams is useful for understanding hardware
limitations.

We first discovered in our testing that the AmLight Intel-
based hosts were considerably faster for single stream tests
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Fig. 4: Baremetal vs VM results on AmLight Testbed (Intel
host, single stream, Debian 11, kernel 5.10)

Fig. 5: Single-stream results at AmLight Testbed (Intel host,
kernel 6.8)

than the ESnet AMD-based hosts. For example, on LAN
tests using the 6.8 kernel and default iperf3 settings, the Intel
hosts achieved single stream throughput of 55 Gbps (Fig. 5),
while the AMD hosts could only achieve 42 Gbps despite
having slight higher clock rates (Fig. 6). We believe this
may be due to the Intel’s 6346 series support for ’AVX-512’
instructions [9], which is known to help significantly with
network performance. The Intel hosts also have a very different
L3 cache architecture, which might contribute to the difference
in TCP performance.

Therefore, for our single stream testing, we focus mainly
on the Intel hosts on the AmLight testbed and note whether
and where AMD host performance differs.

We first present results on the AmLight testbed for
MSG ZEROCOPY and BIG TCP. Figure 5 shows the through-
put at various latencies for default iperf3 flags, default
plus zerocopy (--zerocopy=z), default with both zerocopy
and packet pacing (--fq-rate) and default with BIG TCP
(gso ipv4 max size and gro ipv4 max size set to 150 KB).
The value for pacing used was manually chosen to be the
maximum rate that avoids excessive loss on the receive host
for all WAN paths: 50 Gbps for AmLight Testbed and 40 Gbps

Fig. 6: Single-stream results at ESnet Testbed (AMD host,
kernel 6.8)

for the ESnet Testbed. The kernel used for the results in this
plot was 6.8. We observe that MSG ZEROCOPY by itself
does not improve throughput, but combined with pacing (at
50 Gbps), provides up to 35% improvement in all WAN tests.
With BIG TCP, we observed a smaller overall impact with
a performance improvement of up to 16%. We also ran tests
with default settings and BIG TCP plus pacing, but neither
showed any performance improvement, so these results were
omitted from the plot. The thin line at the top of each result in
this plot and subsequent plots indicates one standard deviation
of the values seen in the set of tests and hence indicates the
stability of the results.

It is important to note that using MSG ZEROCOPY on a
network path with an RTT over a few milliseconds requires
increasing net.core.optmem max, otherwise it can actually
hurt performance and increase sender CPU utilization. This
is set using the sysctl command. For example: sysctl -w
net.core.optmem max=1048576. optmem max is the maxi-
mum ancillary buffer size allowed per socket. Ancillary data
is a sequence of struct cmsghdr structures with appended
data. MSG ZEROCOPY also uses optmem max as a limit
for its internal structures. For the results in this section an
optmem max of 1MB was used on all tests. In the following
section we also study the CPU utilization and performance
impact of different optmem max sizes.

We also tested MSG ZEROCOPY and BIG TCP on the
ESnet Testbed. Single stream results with AMD hosts are
all slower on the ESnet Testbed due to the above-mentioned
issues. However, the improvements from using zerocopy com-
bined with packet pacing follow the same pattern, providing
85% improvement on the WAN path and matching the perfor-
mance of the LAN test, as seen in Fig. 6.

B. CPU Utilization

We next explore CPU utilization in more detail. Figure 7
shows single stream sender and receiver CPU utilization for
various latencies on AmLight Testbed hosts, for both default
iperf3 settings and for iperf3 with zerocopy and pacing (at
50 Gbps). We see that with default settings on the LAN,
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Fig. 7: CPU utilization at various latencies (Single Stream on
Intel host)

Fig. 8: CPU utilization at various latencies (Single Stream on
AMD host)

throughput is limited by the receiver host CPU, while sender
host limited on the WAN. But when using zerocopy with
optimal settings for optmem max and packet pacing, the
sender CPU drops dramatically, and the receiver host becomes
the bottleneck. Linux 6.5 was used for these results. Also note
that with proper tuning, single stream throughput is identical
on all paths tested, regardless of RTT. TX/RX Cores in the plot
aggregate the CPU utilization of the cores used by both iperf3
and NIC interrupts; therefore this value can go above 100%.

Figure 8 shows single stream sender and receiver CPU for
LAN and WAN on ESnet AMD-based hosts, for both default
iperf3 settings, and for iperf3 with zerocopy and pacing.
Note that for the AMD-based hosts, we see similar results
but at lower throughput. Without zerocopy and pacing, WAN
throughput is about 40% slower than LAN throughput. But
with zerocopy and pacing, single-stream WAN throughput is
quite similar to LAN throughput. The main difference between
these two plots is that the sender CPU on the WAN is much
higher on AMD hosts than on Intel hosts.

Figure 9 shows CPU and throughput for various values of
optmem max on network paths with various latencies. The
first thing to notice is that with the default value of 20KB for

Fig. 9: Sender performance with zerocopy for various opt-
mem max values (Intel host, kernel 6.5)

Fig. 10: Multi-Streams results for 8 flows on ESnet Testbed
(AMD host, kernel 6.8)

optmem max we are completely CPU limited on the sender,
and WAN performance is severely affected. After increasing
optmem max to 1 MByte (which is the value recommended
by MSG ZEROCOPY developers [2]), the pacing rate now
introduces a limit, and the sender CPU is the bottleneck on
all WAN tests. On our highest latency path (RTT = 104ms),
we could only achieve a throughput of 40 Gbps compared with
50 Gbps on the shorter paths.

Increasing optmem max beyond 1MB, we were able to
achieve the same throughput across all WAN RTTs, and reduce
the sender CPU even further. On kernel 6.5, after testing
different values for optmem max we found that 3405376
(approximately 3.25 MB) provided the best WAN performance
on all our test paths. Values above 3.25 MB did not provide
any noticeable benefit. However, setting optmem max to 3.25
MB didn’t have consistent behaviour across all kernel versions,
and additional testing is needed. Therefore we are using 1MB
for optmem max for all test results reported in this paper.

C. Parallel Stream Results

Most R&E production data movement tools such as Globus
[24] and Rucio/FTS [25] use parallel streams (or multiple
files in parallel), so it is essential to see how parallel streams
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TABLE I: ESnet Testbed, LAN results, no Flow Control

Test Config Ave Tput Retr Min Max stdev

unpaced 166 Gbps 242 154 177 8.1
25 Gbps / stream 166 Gbps 70 146 172 9.1
20 Gbps / stream 147 Gbps 83 115 153 12.3
15 Gbps / stream 80 Gbps 118 118 119 .1

TABLE II: ESnet Testbed, WAN results, no Flow Control

Test Config Ave Tput Retr Min Max stdev

unpaced 127 Gbps 73K 119 137 7.2
25 Gbps / stream 136 Gbps 22K 104 157 15.8
20 Gbps / stream 131 Gbps 8K 118 142 8.9
15 Gbps / stream 115 Gbps 4K 108 119 4.7

behave in this environment. We ran a set of tests with 8
parallel streams, with various pacing settings. Previous work
has demonstrated the importance of pacing, especially for
parallel stream WAN tests [26][27].

We start by looking at the ESnet results, as there was more
available bandwidth on the ESnet testbed. Figure 10 shows
results for 8 TCP flows on the ESnet testbed paced at various
rates. The line labelled Max Tput in the plot indicates the
maximum possible throughput based on NIC hardware speed
or pacing settings. Using MSG ZEROCOPY with pacing uses
less sender CPU, and provides consistent overall throughput
of nearly the maximum possible (200 Gbps to 120 Gbps,
depending on pacing) on both the LAN and WAN tests,
providing a huge overall performance improvement. Note that
the standard deviation is smallest using 15 Gbps for pacing
compared to the other pacing settings.

More details on the ESnet tests results, including packet
retransmits and minimum/maximum values, are shown in
Tables I and II. These results show that pacing is extremely
important in environments without IEEE 802.3x flow control.
These results are for the 5.15 kernel, and use default iperf3
settings, other than --fq-rate option to set the pacing rate.

We note that while these results show that pacing is not
required to achieve reasonable throughput for LAN applica-
tions, pacing still helps balance the flows. Without pacing, we
commonly see single flow speeds ranging from 5-30 Gbps
per flow during the same test run. With proper pacing, all
flows get roughly the same throughput. This is shown by the
high number of packet retransmits and high standard deviation
shown in the LAN results table. It was only when pacing all the
way down to 15 Gbps/flow did the standard deviation become
negligible.

For WAN scenarios, pacing is even more important. For all
tests with pacing above 15 Gbps/stream, the standard deviation
was quite high. For example, we see the total throughput for
8 streams range from 31 Gbps to 120 Gbps for the same
test configuration. These results show that high-speed parallel
flows are very likely to interfere with each other, leading to
a large number of retransmits, especially on the WAN. In the
ESnet environment with 200G ConnectX-7 NICs, this occurs
any time the total bandwidth attempted (number of streams *

Fig. 11: Multi-Stream results for 8 flows on AmLight Testbed
(Intel host, kernel 6.8)

TABLE III: ESnet Production DTNs, with Flow Control

Test Config Ave Tput Retr Range

unpaced 98 Gbps 29K 9-16 Gbps
15 Gbps / stream 98 Gbps 27K 10-13 Gbps
12 Gbps / stream 93 Gbps 8K 11-12 Gbps
10 Gbps / stream 79 Gbps 1K 10-10 Gbps

pacing rate) is over 120 Gbps.
The results on the AmLight testbed were similar, as shown

in Figure 11. All tested scenarios consist of 8 TCP streams
paced at both 10 Gbps and 9 Gbps per flow. Default iperf3
settings is our baseline, which shows throughput decreases
with increasing latency, dropping from roughly 62 Gbps to 50
Gbps, due to being CPU limited on the sender.

But different from what was observed on the ESnet Testbed,
AmLight results shows that zerocopy without pacing was not
able to reach maximum performance. This may be explained
by the fact that AmLight WAN paths had around 16 Gbps of
production traffic in the background during our tests, so the
unpaced zerocopy WAN tests may have suffered congestion,
whereas in the ESnet testbed, there was no competing traffic.
As on the ESnet testbed, overall the standard deviation is
smaller when doing more pacing. This is seen comparing the
standard deviation for the 9 Gbps per stream to the 10 Gbps
pacing results.

D. Results with Flow Control

Results in an environment with flow control are quite dif-
ferent. Table III shows results between two ESnet production
DTNs, RTT = 63ms. Pacing helps to reduce the number of
retransmits and make results more consistent, but the average
throughput is not impacted. In particular, note the high range
of per-flow throughput (9-16 Gbps) without pacing, but when
paced to 10 Gbps/stream, all flows were exactly 10 Gbps.

E. Kernel Version Results

We see significant improvement with newer kernels on the
ESnet testbed (AMD-based hosts). Figure 12 summarizes the
results. From this figure, we see that the 6.5 kernel was around
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Fig. 12: Kernel version results on ESnet Testbed (AMD host,
single stream)

Fig. 13: Kernel version results on AmLight Testbed (Intel host,
single stream)

12% faster than 5.15, and the 6.8 kernel was 17% faster than
6.5, for a total improvement of over 30% from 5.15 to 6.8
kernel.

On the AmLight testbed (Intel-based hosts), Figure 13, the
improvements are similar, though not quite as dramatic. For
example, single stream LAN tests on the 6.8 kernel were 27%
faster than the 5.15 kernel. Single stream WAN performance
was the same for all kernels, as they were limited to the 50
Gbps pacing setting required to prevent the receiving host from
dropping packets.

Note that with Ubuntu it is quite easy to install the newer
(HWE) kernels using apt:

# to install 6.5 on Ubuntu 22
apt install linux-generic-hwe-22.04
# to install 6.8 on Ubuntu 22
apt install linux-image-generic-hwe-22.04-edge

F. Congestion Control Results

Initially we used both CUBIC and BBR ( BBRv1 and/or
BBRv3, depending on the kernel version) for our testing. Over-
all, single stream performance was not significantly impacted
by the choice of congestion control algorithm, as there is
no congestion on our testbeds. As expected, TCP retransmit

counts were higher with BBR, especially BBRv1. On the WAN
tests, BBRv1/BBRv3 both ramp up faster than CUBIC. We
also note that for parallel streams, the BBR flows greatly
benefit from proper pacing, otherwise they tend to interfere
with each other and back off.

Since the overall results for BBR were not significantly
different from CUBIC in our experiments, we do not include
congestion control comparisons in this paper.

V. CONCLUSIONS AND FUTURE WORK

Based on our extensive testing of single and parallel stream
100 Gbps flows in two different testbed environments, we
derived recommendations separated into two use cases: max-
imum single flow benchmarking, and DTNs running parallel
streams. The single flow benchmarking use case ensures that
a 100G+ host is properly tuned for maximum throughput with
minimum CPU consumption.

Note that many of the performance enhancements demon-
strated in this paper are only realized when additional tuning
parameters are used in combination with enabling specific ca-
pabilities. For example, MSG ZEROCOPY does not provide
much benefit without increasing optmem max to appropriate
values. It is important to ensure that high performance hosts
are configured with the appropriate tuning parameters in
addition to just enabling high-performance capabilities.

A. Single Flow Benchmarking

When performing single flow benchmarks, the following are
recommended:

• Use tuning settings from https://fasterdata.es.net/
host-tuning/linux/100g-tuning/;

• For maximum performance and flow stability use separate
CPU cores for IRQ and your test tool;

• If possible, use a tool that supports MSG ZEROCOPY,
increase optmem max, and use packet pacing. This
should provide more stable flows and up to 35% faster
throughput;

• Use kernel 6.8 for up to 38% better performance on
WAN and 30% better performance on LAN compared
with kernel 5.15;

• Use network devices that support IEEE 802.3x flow
control when possible. If not, be sure to use some level
of packet pacing.

Note that pacing single flows above 32 Gbps is essential
when using MSG ZEROCOPY at speeds above 32G, but this
requires a recent patch to iperf3 [16].

B. DTN Use Case

When doing a large number of parallel streams, there is less
to worry about. The biggest impact is from pacing the streams
so that they do not interfere with each other.

For a production DTN it might be tricky to figure out the
optimal pacing for your environment. If the 100G DTN is
serving data to mainly 10G clients, it might be best to pace
to 1 Gbps per flow. If it is mainly sending data to other 100G
hosts, 5-8 Gbps/flow might be fine. Note that ‘tc’ can be used
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to pace all flows on the host (up to 32 Gbps only), as described
at [28].

A heavily used DTN that is running out of CPU serving
data to clients would benefit from using tools that support
MSG ZEROCOPY. Software that does user-level checksums,
such as Globus, may benefit from the extra CPU cycles.

While our testing was memory-to-memory, and not disk-
to-disk, we believe these recommendations will still hold in
production data transfer environments.

C. Future Work

All our tests were executed on real (not emulated) networks,
without loss and congestion. Further testing is necessary to
evaluate MSG ZEROCOPY and BIG TCP on networks with
congestion or packet loss. We also intend to evaluate any
interactions with congestion control algorithms such as BBRv3
in such an environment.

Another next step is to test the scalability of the parallel
stream scenario on 400G gear. Based on our current results,
we would expect that 20 flows paced at 20 Gbps would be
possible, and possibly 10x40G. But additional bottlenecks may
be found, and tuning recommendations may need to be revised.

Further receiver side optimizations are available for Nvidia
ConnectX-7 network cards on Linux 6.11 [29], which include
receiver side hardware accelerated GRO and header-data split.
Header-data split is the ability for a NIC to dissect packets
and place header and data into separate places, and is needed
to enable zerocopy on the receive side [30]. Preliminary
results from the developer suggests up to 60% throughput
improvement for single stream tests. Our initial results show a
33% improvement on AMD hosts (40 Gbps vs 53 Gbps), and
a 5% improvement (62 Gbps vs 65 Gbps) on Intel hosts after
enabling hardware GRO on the receiver for single stream tests
with a 9K MTU. For tests with a 1500B MTU on Intel hosts
we saw an impressive 160% improvement in throughput (24
Gbps vs 62 Gbps). We plan to do more extensive testing of
this new option in the near future.

Another area of further exploration is to evaluate using both
BIG TCP and MSG ZEROCOPY simultaneously on a custom
kernel with MAX SKB FRAGS=45 [10]. In preliminary tests
we were able to achieve up to 65% improved performance
with this configuration. But this setup required modifying
the Nvidia ConnectX device driver (mlx5), and the results
were not consistent. More BIG TCP testing is needed before
we can be confident about its performance improvements,
and production kernels need to support BIG TCP in an
operationally supportable way before it can be deployed.
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