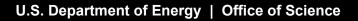


A Completely Serious Overview of Network Performance for Scientific Networking

Jason Zurawski, Science Engagement Engineer ESnet

Focused Technical Workshop Lawrence Berkeley National Lab, Berkeley, CA July 18th 2013


Outline (Completely Serious)

- Endgame Efficient networks to support science
- Use Case
- Expectations & Realities
- Problem Definition
- Solution Space
- Conclusions

2 - ESnet ENGAGE (engage@es.net) - 7/17/13

© 2013 Muppet Wiki

Endgame = Scientific Network Use

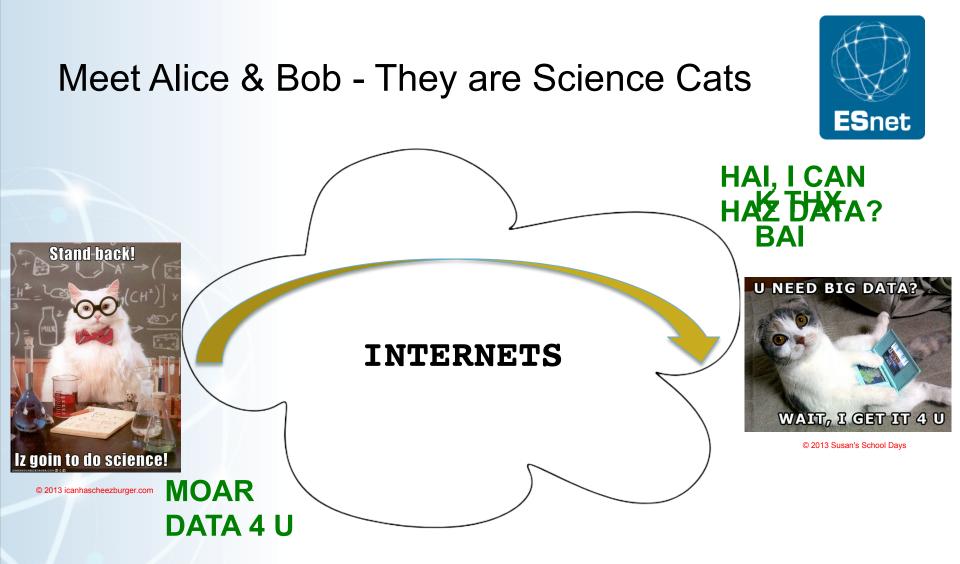
ESnet

- What we have seen so far yesterday, and today:
 - Network Infrastructure
 - Storage and Processing
 - Workflow
 - Applications
- What we are missing:
 - Preparing for the worst, e.g. sometimes it just doesn't work
 - Addressing problems (deliberate and non-deliberate)
 - o "Festivus"
 - e.g. data movement/network design strategies for the rest of us

 may involve feats of strength and airing of grievances

3 - ESnet ENGAGE (engage@es.net) - 7/17/13

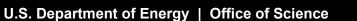
Outline



- Endgame
- Use Case Meet our actors and action
- Expectations & Realities
- Problem Definition
- Solution Space
- Conclusions

Use Case = End to End Exchange

- Alice & Bob are collaborators
 - Experts in their field
 - Physically separated (common)
 - Rely on networks, but are not IT experts (common & expected)
 - They know their local IT staff. May also have an adversarial relationship with them (e.g. Alice and Bob are 'troublemakers' since they use the network, and expect it to work)
- Alice & Bob want to embark on a new project
 - Instrumentation @ one end, processing/analysis @ the other
 - Keep in mind they know about the science, not about the technology in the middle
 - Use infrastructure they are comfortable with, perhaps cobbled together by local support staff



Outline

- Endgame
- Use Case
- Expectations & Realities What could possibly go wrong?
- Problem Definition
- Solution Space
- Conclusions

7 - ESnet ENGAGE (engage@es.net) - 7/17/13

Lawrence Berkeley National Laboratory

I can see no way in which this

carefully laid plan could ever fail.

SANHASCHEEZBURGER.COM 🚟 🕯

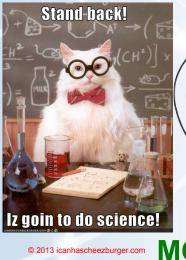
© 2013 funnyasduck.net

Expectations & Realities

"In any large system, there is always something broken."

Jon Postel

- Modern networks are large and complicated
- Many users will encounter unforeseen (and therefore challenging) situations:
 - Upgrading networks breaks them (loss of configuration, etc.)
 - Synergy between the new and the old
 - Statistical anomalies, e.g. that 7 year old interface will stop working eventually...
- Mitigating the risk can be done in a number of ways:
 - Analysis and alteration to architecture
 - Careful thought to security/data policies in target areas
 - Integration of software designed to exercise the network, and alert/visualize



© Dog Shaming 2012

Meet Alice & Bob; Sad Reality

© 2013 icanhascheezburger.com

© 2013 Renee Richardson photography

© 2013 Susan's School Days

© 2013 Berkeley Breathed

9 - ESnet ENGAGE (engage@es.net) - 7/17/13

DA

Lawrence Berkeley National Laboratory

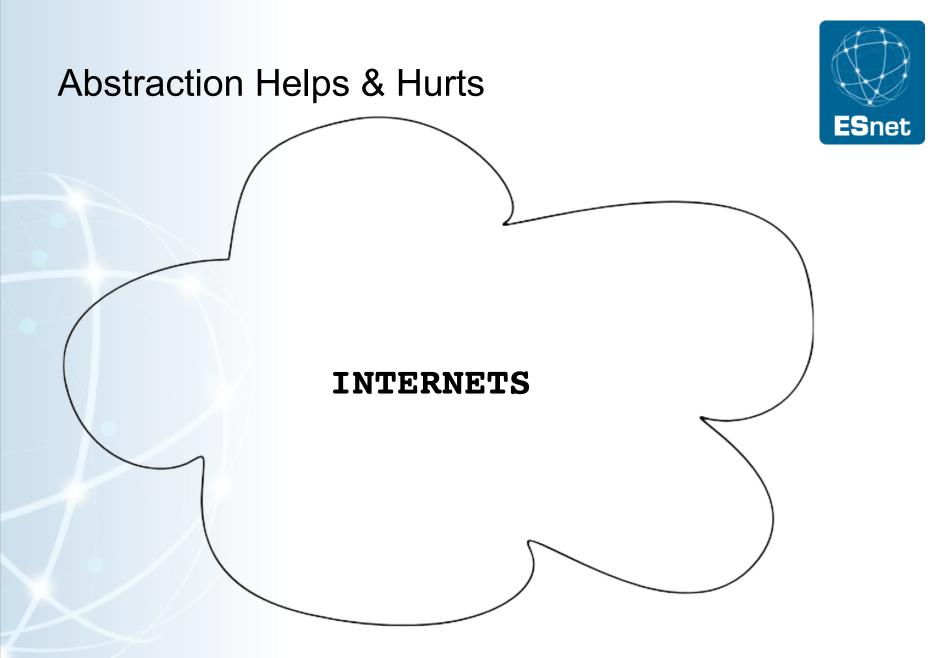
U.S. Department of Energy | Office of Science

"The Network Is Working Fine"

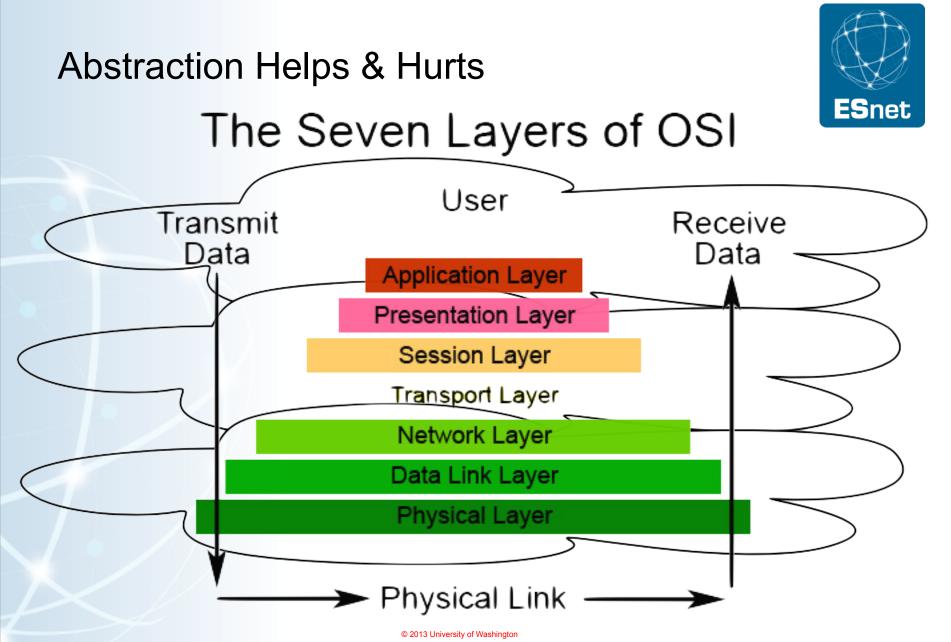
10

- Trouble prompted a call to support (e.g. know when you are in too deep)
- The response can be frustrating (we all have been there...)
 - The engineers look at magic (and secret) monitoring tools, and tell you, firmly, that things are as they should be.
- In fairness the network *<u>may</u>* be fine locally. e.g. We don't see the signs of stress for the pieces we control
- In reality we need 'end to end' visibility, its what you experienced after all

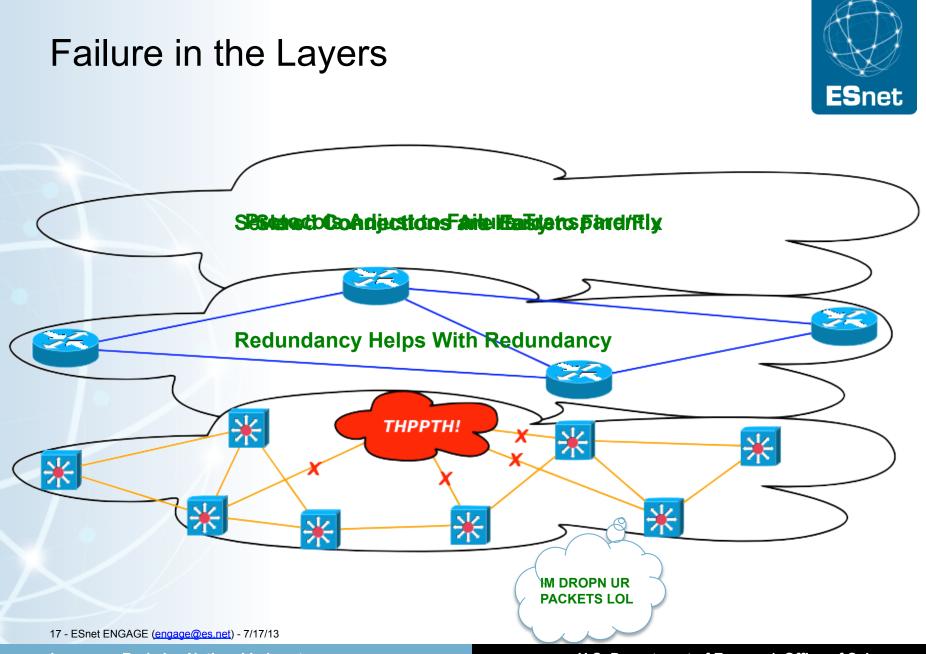
Identification of Problems



- Use Case = End to End
 - All collaboration is multi-domain, which implies you need to care about how others are running their networks as well
 - Many problems may fall between the cracks as the RTT increases (N.B. work by many, including M. Mathis)
- Two behaviors that need adjustment:
 - "Not My Network, Not My Problem"
 - Patience of Researcher


Outline

- Endgame Efficient Use of the Network to Support Science
- Use Case
- Expectations & Realities
- Problem Definition More than meets the eye
- Solution Space
- Conclusions



Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

U.S. Department of Energy | Office of Science

Outline

- Endgame Efficient Use of the Network to Support Science
- Use Case
- Expectations & Realities
- Problem Definition
- Solution Space It's not as bleak as it seems
- Conclusions

Solution Space

ESnet

- Basic idea:
 - Architectural changes
 - Solution for Monitoring/Emulation of User Behavior
 - Workflow Analysis/Adoption of New Tools (but we have heard that part already)
- Architecture
 - Split out enterprise concerns from data intensive ones
 - Directed security policies, instead of blanket enforcement
 - E.g. the Science DMZ
- Monitoring:
 - Dedicated resources at different vantage points in the network
 - Running some standard and useful types of measurement
 - Integrated with tools that allow you to see/hear when a problem arises

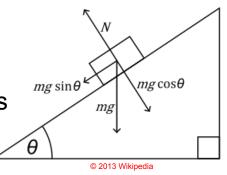
Science DMZ Overview

- Significant commonality in issues encountered with science collaborations ... and similar solution set
 - The causes of poor data transfer performance fit into a few categories with similar solutions
 - Un-tuned/under-powered hosts
 - Packet loss issues
 - Security devices
 - A successful model has emerged the Science DMZ
 - This model successfully in use by CMS/ATLAS, ESG, NERSC, ORNL, ALS, and others
 - The Science DMZ is a *design pattern* for network design.
 - Not all implementations look the same, but share common features
 - Some choices don't make sense for everyone, caveat emptor

^{20 -} ESnet ENGAGE (engage@es.net) - 7/17/13

The Science DMZ in 1 Slide

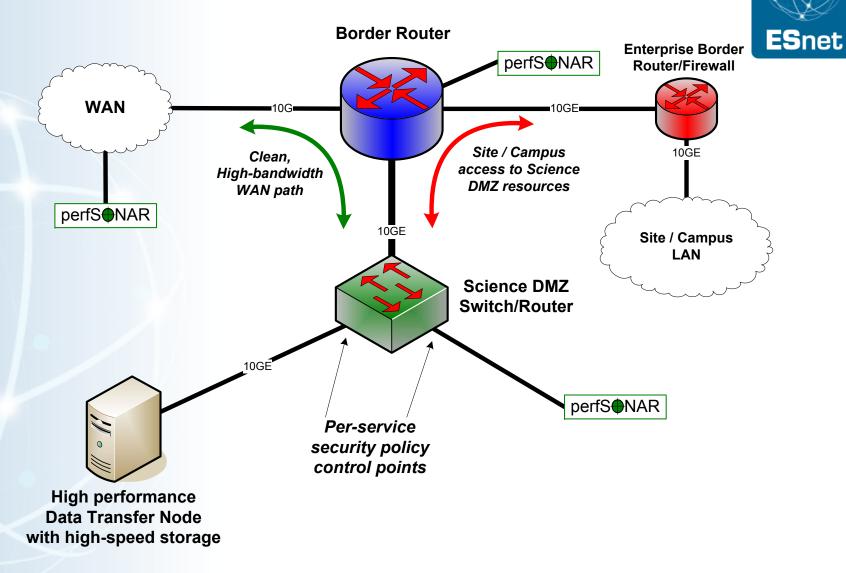
Consists of three key components, all required:


- "Friction free" network path
 - Highly capable network devices (wire-speed, deep queues)
 - Virtual circuit connectivity option
 - Security policy and enforcement specific to science workflows
 - Located at or near site perimeter if possible
- Dedicated, high-performance Data Transfer Nodes (DTNs)
 - Hardware, operating system, libraries all optimized for transfer
 - Includes optimized data transfer tools such as Globus Online and GridFTP © 2013 Globus

Performance measurement/test node

perfSONAR

Details at http://fasterdata.es.net/science-dmz/



perfSONAR

^{21 -} ESnet ENGAGE (engage@es.net) - 7/17/13

Science DMZ – Simple Abstract Cartoon

Perf-what?

Network Monitoring

- E.g. everyone has some form on their network. Addresses needs of local staff for understanding state of the network
 - Would this information be useful to external users?
 - Can these tools function on a multi-domain basis?
- Beyond passive methods, there are active tools.
 - E.g. often we want a 'throughput' number. Can we automate that idea?
 - Wouldn't it be nice to get some sort of plot of performance over the course of a day? Week? Year? Multiple endpoints?
- perfSONAR = Measurement Middleware

23 - ESnet ENGAGE (engage@es.net) - 7/17/13

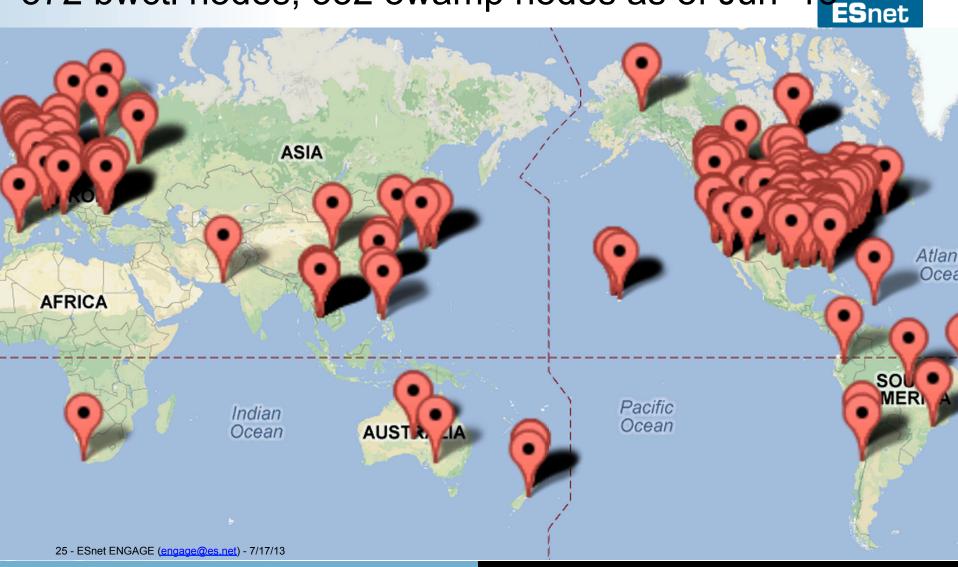
What is perfSONAR?

http://psps.perfsonar.net

perfSONAR is a tool to:

- Set network performance expectations
- Find network problems ("soft failures")
- Help fix these problems

All in multi-domain environments


• These problems are all harder when multiple networks are involved

perfSONAR is provides a standard way to publish active and passive monitoring data

This data is interesting to network researchers as well as network operators

^{24 -} ESnet ENGAGE (engage@es.net) - 7/17/13

World-Wide perfSONAR-PS Deployments: 572 bwctl nodes, 552 owamp nodes as of Jun '1

Lawrence Berkeley National Laboratory

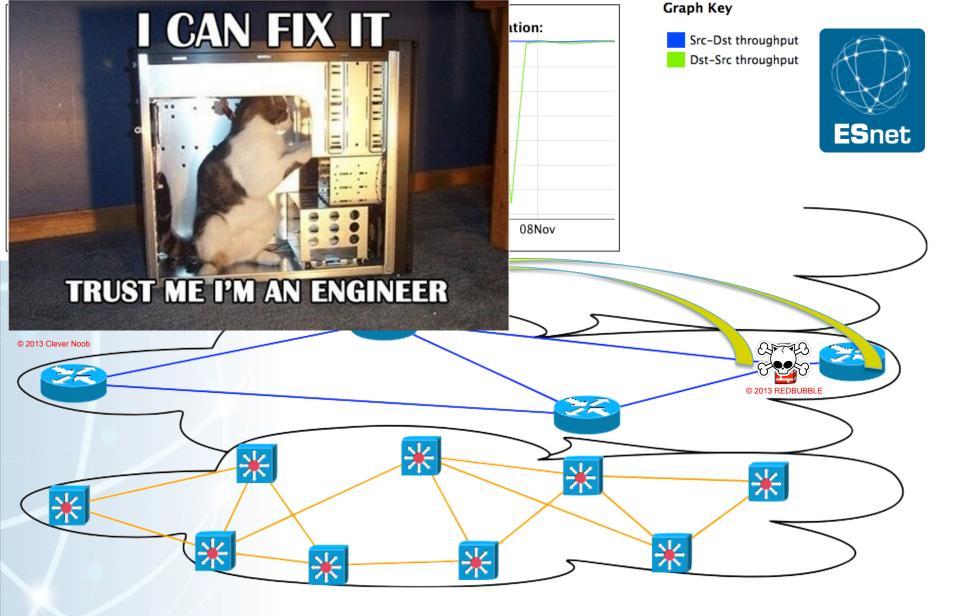
U.S. Department of Energy | Office of Science

Visualizations & Alarms – Automation is the key http://ps-dashboard.es.net

2: ESnet to ESnet Throughput Testing Dashboard

ESnet Hub to Large DOE Site Border Throughput Testing

Throughput >= 1Gbps Throughput >= 100Mbps and < 1Gbps Throughput < 100Mbps Unable to retrieve data washotlesnet unnot esnet ptiesnet 1.es.net esnet 1.es.net Se. ptl.es.net ht-ptl.es.net esnet es.net 15h-pt1.es.1 pt1.es. anl-pt1.es.net bnl-pt1.es.net chic-pt1.es.net fnal-pt1.es.net ga-pt1.es.net hous-pt1.es.net jgi-pt1.es.net lbl-pt1.es.net IInl-pt1.es.net nash-pt1.es.net nersc-pt1.es.net ornl-pt1.es.net pnwg-pt1.es.net pppl-pt1.es.net sdsc-pt1.es.net slac-pt1.es.net snll-pt1.es.net sunn-pt1.es.net wash-pt1.es.net



One motivation for Science DMZ & perfSONAR models: Soft Network Failures

- Soft failures are where basic connectivity functions, but high performance is not possible.
- TCP was intentionally designed to hide all transmission errors from the user:
 - "As long as the TCPs continue to function properly and the internet system does not become completely partitioned, no transmission errors will affect the users." (From IEN 129, RFC 716)
- Some soft failures only affect high bandwidth long RTT flows.
- Hard failures are easy to detect & fix
 - Soft failures can lie hidden for years!
- One network problem can often mask others

^{27 -} ESnet ENGAGE (engage@es.net) - 7/17/13

Outline

- Endgame Efficient Use of the Network to Support Science
- Use Case
- Expectations & Realities
- Problem Definition
- Solution Space
- Conclusions

Conclusions

ESnet

- Goals:
 - Efficient end to end use of the network, no matter the use case (bulk data movement to video)
 - 'Happy' users & operators
- Problems:
 - Network design may need work, sometimes things just break
 - How to find/fix the problems that are out there
- Solutions
 - Architectural changes
 - Adoption of new solutions
- Continued Conversation:
 - o perfSONAR:
 - <u>http://psps.perfsonar.net</u>
 - perfsonar-node-users@internet2.edu
 - <u>https://lists.internet2.edu/sympa/info/performance-node-users</u>
 - Science DMZ:
 - <u>http://fasterdata.es.net</u>
 - sciencedmz@es.net
 - <u>https://gab.es.net/mailman/listinfo/sciencedmz</u>

A Completely Serious Overview of Network Performance for Scientific Networking

Questions?

Jason Zurawski – zurawski@es.net

http://www.es.net/

http://fasterdata.es.net/

