
Exploring the BBRv2 Congestion Control
Algorithm for use on Data Transfer Nodes

Brian Tierney, Eli Dart, Ezra Kissel
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
Email: {bltierney,dart,kissel}@es.net

Eashan Adhikarla
Lehigh University

Bethlehem, PA, USA
Email: eaa418@lehigh.edu

Abstract—It is well known that loss-based TCP congestion con-
trol algorithms are problematic for high-speed high-latency flows
that are common in Big Science. In 2016 Google released a new
congestion control algorithm called ’BBR’ (Bottleneck Bandwidth
and Round-trip time) that uses a model-based approach, and the
design has since been refined in an alpha release of BBRv2. In
this paper, we describe and perform a set of experiments that
assess the suitability of BBRv2 for use on Data Transfer Nodes
(DTNs). The experiments were run on both production R&E
networks as well as within a controlled testbed environment. Our
analysis of the results show that BBRv2 improves upon BBRv1
for common Big Science transfer scenarios and is a promising
option in high-speed short-queue networking environments.

I. INTRODUCTION

A Science DMZ [1] is a portion of a network built at or
near a campus local network perimeter that is designed such
that the equipment, configuration, and security policies are
optimized for high-performance workflows and large data sets.
High-performance servers, called Data Transfer Nodes (DTNs)
are connected directly to the Science DMZ. The DTNs handle
all data transfers, and need to be tuned for maximum network
throughput. DTNs typically run parallel flow data transfer tools
to overcome the limitation of loss-based congestion control
algorithms.

In this paper we evaluate the use of Google’s TCP con-
gestion control algorithm, known as BBR [2], [3] (Bottleneck
Bandwidth and Round-trip time), for use on high-performance
DTNs. The results shown in this paper are from tests run
on the ESnet Testbed, described below, and on production
networks using a variety of public perfSONAR [4] hosts. We
show that BBR does much better than CUBIC on lossy paths,
and the higher the loss rate and round-trip time (RTT), the
more BBR outperforms CUBIC. We confirm that BBR prefers
smaller switch buffers, and CUBIC prefers larger buffers. We
show that the BBRv1 retransmit rate is unacceptably high
with parallel flows, and thus BBRv1 should not be used with
parallel data transfer applications.1 Finally, we confirm the
results from previous papers on BBR that are primarily based
on evaluations using Mininet [5] environments.

1To avoid confusion, we use the following nomenclature in this paper:
BBRv1 is BBR version 1, BBRv2 is BBR version 2, and BBR is used when
the concept applies to both BBRv1 and BBRv2.

II. OVERVIEW AND GOALS

The main goal of this work is to evaluate whether or not
the BBR congestion control algorithm is appropriate for use
on DTNs in a Science DMZ environment. The DTN network
characteristics we are interested in include:

• High-speed hosts (often 40G or 100G), sending to slower
hosts (often 10G)

• A large number of parallel flows (up to 16)
• High-latency paths, often 100ms RTT or higher
Most of the previous papers comparing BBR to CUBIC,

described in the related work section below, are focused on
single flow results, and paths where the sender and receiver
are the same speed. Most of these papers also use Mininet
rather than real networks.

Historically, the R&E community has deployed network
devices with deep buffers in a Science DMZ. This is to help
CUBIC avoid packet loss. A rule of thumb was to try for twice
as much buffering as the BDP (Bandwidth Delay Product)
of the largest data transfers. The problem with this approach
is that it does not scale well to network speeds of 100G,
400G, and beyond. BBR was designed in part to eliminate
the dependence on large buffers, and one of our goals is to
understand if BBR eliminates the need for deep buffers in the
DTN use case.

The contributions of this paper include verifying that results
from previous papers using results collected from Mininet are
valid on real networks, and are valid for large numbers of
parallel flows and mismatched host speeds as well. We show
that not only are previous results valid, but in some cases the
DTN use case shows an even greater advantage for BBRv2,
as parallel flows and speed mismatch lead to greater packet
loss, which BBR handles much better than CUBIC.

BBRv2 Background
TCP Congestion Control Algorithms fall into 2 general

categories: loss-based (e.g.: Reno[6] and CUBIC[7]), where
the sender slows down if loss is detected, and delay-based
(e.g.: Vegas[8] and Fast[9], where the sender slows down if
additional delay is detected. The Internet has largely used loss-
based congestion control algorithms, which assume that packet
loss is equivalent to congestion.

However, equating packet loss with congestion is problem-
atic. In particular, when TCP’s instantaneous rate is higher



than its average rate (which is TCP’s normal bursty behavior),
a loss-based congestion control algorithm can dramatically
reduce TCP’s performance because of microburst congestion.
This is more likely if the path contains routers or switches
with shallow buffers. Using routers and switches with deep
buffers can improve the performance of loss-based congestion
control, but deep-buffered devices cost more and increase the
risk of buffer bloat.

The BBR congestion control algorithm takes a different
approach, and does not assume that packet loss signals conges-
tion. BBR builds a model of the network path in order to avoid
and respond to actual congestion. BBR uses pacing to set the
sending rate to the estimated bottleneck bandwidth. The pacing
technique spaces out or paces packets at the sender node,
spreading them over time. This approach is a departure from
the traditional loss-based algorithms, where the sending rate
is established by the size of the congestion window, and the
sender node may send packets in bursts, up to the maximum
rate of the sender’s interface. Thus, traditional algorithms rely
on routers to perform buffering to absorb packet bursts.

While BBRv1 has shown dramatic improvements over
CUBIC, several papers [10], [11] have reported issues with
BBRv1 such as CUBIC unfairness and high retransmission
rates. In 2019 a new alpha version of BBR, version 2 (BBRv2)
[12] was released, which strives to address these limitations.
BBRv2 uses two estimates to establish the sending rate of
a connection: the bottleneck bandwidth and the RTT of the
connection, and adapts bandwidth probing for better coexis-
tence with Reno/CUBIC. BBRv2 also incorporates Explicit
Congestion Notification (ECN) and better estimates the packet
loss rate to establish the sending rate.

III. RELATED WORK

Since BBR was released in 2016, a number of papers have
been published analyzing how BBR behaves in a number of
environments.

Scholz et al. [11] perform an analysis using Mininet of
BBR inter-flow unfairness and inter-protocol fairness when
competing with TCP CUBIC flows, and find that in most cases,
BBR and CUBIC do not share bandwidth fairly. They also
confirm that the bottleneck buffer size is crucial for the fairness
between competing BBR and CUBIC flows. They show that
with a buffer size of up to 1.5 times bandwidth delay product
(BDP), BBR causes constant packet loss. CUBIC interprets
this as a congestion signal and reduces its sending rate. With
a buffer size of 3 times the BDP, both types of flows shared
the path equally, and further increasing buffer size, CUBIC
steadily claims more of the bandwidth. They state that this is
due to the fact that CUBIC fills up the ever-growing buffers.

Cao et al. [10] use Mininet to show that BBRv1 performs
much better than CUBIC in a shallow buffer environment,
but has a much higher (200x) retransmit rate. Other papers
showing similar results include [13] and [14], which used
a DPDK-based software switch. The paper with goals most
similar to this paper is [15], which analyzes BBRv1 with

parallel flows, and shows that BBR is much better than CUBIC
with parallel flows as well as single flows.

More recent work has also begun exploring BBRv2. Kfoury
et al. [16] also used Mininet to show that BBRv2 is indeed
an improvement over BBRv1, with fewer retransmissions and
greater fairness with CUBIC. They also show that pacing
improves fairness, and that drop tail queues should be avoided.
Zhang confirms similar BBRv2 improvements using ns3 [17].
Song et al. [18] have a newly published paper based on
Mininet results showing similar behavior, and also found that
when identical BBRv2 flows enter a bottleneck link with large
buffers at different times, their achievable transfer rates do not
converge.

To the best of our knowledge, this is the first paper that
addresses the practical use of BBR/BBRv2 on a Data Transfer
Node (DTN). It is also one of the few papers to include results
from a real-world, production network.

IV. TESTING TOOLS AND ENVIRONMENT

The results in this paper include data collected on the
ESnet testbed [19], and data collected from an ESnet
perfSONAR[20] host in Boston, MA, USA. We used perf-
SONAR’s scheduler to avoid test collisions. As BBRv2 only
requires sender side modifications, we made use of our
perfSONAR host with BBRv2 support to run tests to public
perfSONAR hosts all around the world.

We modified iperf3 [21] to run odd numbered flows using
the default congestion control for the host, and even numbered
flows using the congestion control specified using the iperf3 “-
C” flag. This allows us to run parallel flows of both cubic and
BBRv2 within the same iperf3 test. We experimented with
giving some iperf3 flows a one second head start, to see if
performance varied with new BBRv2 flows encounter existing
cubic flows, but found no performance difference. The default
iperf3 behaviour is thus used for all results.

All sending hosts were running the Ubuntu Operating Sys-
tem with a BBRv2 patched version 5.10.0 kernel. Host tuning
followed guidelines from http:// fasterdata.es.net, including the
recommendation that hosts be configured with 9000 byte
MTUs. We use TCP buffer autotuning for all tests, and the
maximum TCP buffer autotuning buffer is set to 512MB.
We also set net.core.default qdisc to fq, as recommended for
BBRv1 and BBRv2.

As perfSONAR does not support the version of Ubuntu
used on our testing hosts, we run the perfSONAR ‘Testpoint’
docker container [22]. We modified this container to run our
customized version of iperf3, and updated versions of ss and
systat. This container is available on Docker Hub [23].

Many DTNs run Globus GridFTP [24] and are configured
to use 16 TCP flows in their default configurations for data
transfers [25]. Another popular data transfer tool for Science
DMZs is FDT [26], which also uses parallel flows. To rep-
resent this common scenario, our parallel TCP testing made
use of 16 parallel flows. For single flow tests we use the ‘fq’
packet scheduler to pace all flows to 9.9 Gbps, and for 16 flow
tests we shape the flows to 2.4 Gbps. Our INDIS 2016 talk

2

http://fasterdata.es.net


Sender Receiver

Corsa Switch

ALU 
Router 
NERSC

ALU 
Router 

Chicago

88ms RTT loop

10G
100G

netem host

Edgecore
switch

xtraffic src

xtraffic dst

Fig. 1: ESnet Testbed

[27] presented pacing test results and justified the recommend
default pacing rate of 2.4 Gbps. As the source and/or sink of
many scientific data transfers are still 10G hosts, and DTNs
will often be servicing multiple DTN transfer requests at one
time, the chances that any single flow would ever get above
2.4 Gbps is low, and this pacing value is likely to improve
overall throughput in most circumstances.

Our test host on a production network, bost-dtn.es.net, was
connected to ESnet at 40G. Since packet bursts over 10G will
lead to packet loss at the receive host, we pace single flow
tests to 9.9 Gbps. We note that any parallel flow tests will
exceed 10G given a 40G physical interface unless the sum of
all flows is appropriately paced to match a 10G destination.
We chose to run five minute tests on the testbed, which is
long enough to determine flow stability and to observe flow
dynamics in the plots. For the tests using public perfSONAR
hosts, we were only able to run one minute tests, as that the
is default test time limit in perfSONAR.

In order to collect data for this paper and ensure consistent
test execution, we developed a testing harness in Python. It
supports a number of features, including: (a) Enabling native
instrumentation through tcpdump (including filters) and/or ss
for each test, (b) Execution of arbitrary commands before
and after a test, (e.g. to set MTU size or TCP parameters),
(c) Invocation of external scripts to control settings such as
network emulation parameters, (d) Parameter sweeps over a
range of values, for example emulated latencies and queue
sizes and various BBRv2 parameter settings, and (e) Con-
figuration of the fq pacing rate for each test. Finally, the
harness also supports exporting a subset of test metadata and
instrumentation results to an external measurement archive
stack (ELK). A sample configuration file for the test harness
is shown in Listing 1 below. The test harness implementation
is open source and publicly available at https://github.com/
esnet/ testing-harness.

ESnet Testbed Configuration

Figure 1 shows the components of the ESnet Testbed used
for the experiments described in this paper. All testbed source
and destination hosts used in this work had 24 cores of type

Intel Xeon CPU E5-2643 v3 in a dual-socket configuration
while the netem host had dual-socket AMD EPYC 7451 24-
core processors. Our testing made use of 10G NICs for the
sender and receiver nodes and 100G NICs were used for the
netem and cross-traffic nodes. A Corsa model DP2400 switch
is used for buffer size experiments, and has a default buffer
size of 100MB. The Edgecore model AS9716-32d switch is
used to interconnect all the hosts and 10G switch, and has a
maximum shared buffer size of 64MB.

One of the useful features of the ESnet testbed is that it
includes both a real, high latency path, and a host configured
to add latency using netem [28]. This allowed us to compare
real vs emulated networks, and confirm that the results agree.
All results in this paper use netem configured on a single port
of the netem host NIC, which impacts egress traffic on the full
duplex link. Our netem configuration set a buffer limit value
of 10000 (packets) for each test. Looking at results from the
ESnet perfSONAR dashboard [29], we commonly see a range
of packet loss on various paths ranging from 0 to 0.2%, with
occasional path with up to 2% loss. For this paper, we chose
to run tests at 0.1%, 0.01%, and 0.001% loss.

We always ran 10 iterations of each test and computed the
mean and variation for each result. When plotting flows, we
select a representative example from the 10 iterations, so that
fine-grained flow behavior is visible in the plot. To calculate
observed loss rates, the test harness uses the Unix tool ss
[30] to count the number of data segments and retransmitted
segments for each flow, sampled at 0.5 second intervals.

We confirmed that our netem path accurately represents a
real path by setting the netem latency to 44ms (88ms RTT), to
match the latency of the ESnet testbed loop. We ran a set of
tests over both the netem path and the real path. Results in both
cases were essentially identical, which provides a high degree
of confidence that the netem environment does not introduce
any unexpected flow behavior in the testbed.

V. RESULTS

All the figures in this paper have the same components.
Time is on the x-axis, and throughput and retransmits are
both on the Y-axis. Mean throughput in the plot is the mean
for just this plot, not the full set of 10 tests. Counts of
packet retransmissions and data segments shown in the plot
are collected from the output of the ss tool run at 0.5 second
intervals. Plots using netem will have the netem settings in the
lower right corner. Plots labeled non-overlapped at the top are
from separate CUBIC and BBR tests, overlayed on the same
plot. Plots labeled overlapped are where CUBIC and BBR
flows are running at the same time.

A. Comparison and competition between CUBIC and BBRv2

The goal of this experiment is to compare CUBIC with
BBRv2 throughput in the presence of varying amounts of
packet loss and latency configured in our testbed environment,
and to determine how much the presence of BBRv2 flows
reduce the throughput of CUBIC flows.

3

https://github.com/esnet/testing-harness
https://github.com/esnet/testing-harness


1 type = perfSONAR
2 enabled = true
3 iterations = 10
4 src = localhost
5 dst = 10.201.1.2
6 src-cmd = pscheduler task --format json throughput --congestion=bbr2 --ip-version 4 --parallel 16

--duration PT5M --dest {dst}↪→

7 # run this before each test command on the source host
8 pre-src-cmd = /usr/sbin/sysctl -w net.ipv4.tcp_congestion_control=bbr2
9 post-src-cmd = /usr/sbin/sysctl -w net.ipv4.tcp_congestion_control=cubic

10 instrument = true
11 tcpdump-filt = -s 128 -i ens2np0 "host {dst} and port 5201"
12 netem-loss = 0.001
13 lat-sweep = 2,5,10,20,30,50
14 pacing = 2.4gbit

Listing 1: A test harness sample configuration entry for a perfSONAR throughput sweep.

Figure 2 shows single CUBIC and BBRv2 flows with netem
loss set to 0.001% packet loss. The upper plot has a path round
trip time (RTT) of 10ms, and the lower plot has a 80ms RTT.
As expected, BBRv2 throughput is close to line rate in the
presence of loss, while CUBIC throughput drops considerably,
even with this very low packet loss rate.

(a) 10ms RTT, BBRv2 and CUBIC

(b) 80ms RTT, BBRv2 and CUBIC

Fig. 2: single flow results: BBRv2 does much better than
CUBIC on paths with 0.001% packet loss

Next we look at results for 16 parallel flows, with the same
loss rate of 0.001%, shown in Figure 3. Note that with 16
flows and this relatively low loss rate, CUBIC and BBRv2
have very similar throughput, even with high latency.

(a) 10ms RTT, BBRv2 and CUBIC, 16 flows, loss = 0.001%

(b) 100ms RTT, BBRv2 and CUBIC, 16 flows, loss = 0.001%

Fig. 3: 16 flow results: with only a small amount of loss
BBRv2 and CUBIC throughput are similar.

We next compare competing CUBIC and BBRv2 with
higher packet loss rates of 0.01% loss (Figure 4), and a much
higher packet loss rate of 0.1% (Figure 5). As expected, we see
that at with higher packet loss rates BBRv2 is a clear winner,
and the BBRv2 advantage increases as the RTT increases.

100G to 10G Testing

As the ESnet testbed hosts have both 100G and 10G NICs,
we want to see how BBRv2 performs in the scenario of a
100G DTN sending to a 10G client over the 88ms testbed loop.

4



(a) 10ms RTT, BBRv2 and CUBIC, 16 flows, loss = 0.01%

(b) 100ms RTT, BBRv2 and CUBIC, 16 flows, loss = 0.01%

Fig. 4: 16 flow results: BBRv2 does much better than CUBIC
with 0.01% loss.

Figure 6a shows consecutive CUBIC and BBRv2 16 flow tests.
Note that the retransmit rate of BBRv2 is roughly 20X that
of CUBIC, but both methods have no trouble approaching 10
Gbps. Figure 6b shows overlapping CUBIC and BBRv2 flows.
Here BBRv2 is 20X faster than CUBIC, and actually has a
lower rate of retransmits.

B. Buffer Size Testing

This experiment aims to compare the impact of small
buffered switches on BBRv2 compared to CUBIC. The Corsa
DP2400 switch in our testbed provided 10G connectivity be-
tween the source and destination hosts and the router providing
the 88ms loop service. Applied to the three 10G Corsa ports
(Fig. 1), we created a queue profile that allowed us to change
the size of the available buffer on each. For each buffer size
test, we ran a background 1 Gbps UDP flow between two other
hosts on the testbed across the same path to create congestion.
UDP was used to ensure a constant rate of background traffic.

Results setting the port buffer size to 64MB, and a much
smaller 12MB are shown in Figure 7. As predicted by the
Mininet results in papers [10] and [16], BBRv2 does much
better with small buffers, and CUBIC does better with large
buffers.

We also ran tests with buffer sizes of 8MB, 16MB, and
32MB, similar to a range of lower cost network devices on the

(a) 10ms RTT, BBRv2 and CUBIC, 16 flows, loss = 0.1%

(b) 100ms RTT, BBRv2 and CUBIC, 16 flows, loss = 0.1%

Fig. 5: 16 flow results: BBRv2 does even better yet with 0.1%
loss.

market [31]. As the buffer size decreases, BBRv2 throughput
increases, and CUBIC throughput decreases, with BBRv2 and
CUBIC having similar throughput with 32MB buffers. Results
are summarized in Table I.

We also ran tests where all 16 flows were CUBIC, and all 16
flows were BBRv2. For these tests buffer size had no impact,
and achievable aggregate throughput was always 8.85 Gbps,
due to the 1 Gbps background UDP traffic.

TABLE I: PORT BUFFER SIZE TEST RESULTS (10G)

Buffer Size CUBIC throughput BBRv2 throughput
8 MB 0.4 Gbps 8.3 Gbps

12 MB 0.9 Gbps 8.0 Gbps
16 MB 1.8 Gbps 6.9 Gbps
32 MB 4.5 Gbps 4.3 Gbps
64 MB 4.6 Gbps 4.2 Gbps

C. Real World Testing

We next compare results obtained on the ESnet testbed with
what we see on the Internet using data collected from tests
to public perfSONAR hosts to confirm that the performance
patterns we see on the testbed agree with those seen on the
R&E networks. Most perfSONAR hosts are configured to
allow only 1-minute tests. However, ESnet hosts allow for
longer tests from another ESnet host, and we were able to

5



(a) BBRv2 and CUBIC results, consecutive test runs

(b) BBRv2 and CUBIC results, overlapping flows

Fig. 6: 100G sender to 10G receiver

contact colleagues at the University of Cambridge in the UK
and have them temporarily allow us to run 5-minute tests to
their perfSONAR host.

We first ran a set of tests between the 40G ESnet test
host bost-dtn.es.net and ten different ESnet perfSONAR hosts
across the network with RTTs ranging from 1ms to 87ms. In
all cases, the network path was a 40G sender across 100G
backbone to 10G receive hosts. A 40G host was chosen as
many large R&E data centers have recently deployed 40G and
100G DTNs. We ran two sets of tests: one where the sender
paced all of the 16 flows to 620 Mbps each, for a total of less
than 10G, and the other where the sender was paced to 2.4
Gbps per flow, or 38.4 Gbps total for 16 flows, which will
oversubscribe the 10G receive host.

Sample results for both a 10G sender and a 40G sender
over ESnet paths are shown in Figure 8. Note that there is
no packet loss with a 10G sender, but 0.05% loss with a 40G
sender. Also, BBRv2 is almost four times faster than CUBIC
with the 40G sender, but exactly the same as CUBIC with the
10G sender due to the lack of packet loss.

In all test cases, if our sending host sent at a rate less than
10 Gbps there was close to zero packet loss. In tests of both
10G and 40G senders to a 10G receiver, CUBIC and BBRv2
achieved full line rate when run in isolation; however, with
simultaneous CUBIC and BBRv2 we see some interesting loss
patterns with a 40G sender.

(a) 64MB switch buffer size (deep buffers)

(b) 12MB switch buffer size (shallow buffers)

Fig. 7: Switch buffer size test results: BBRv2 does much better
with small buffers

One surprising result was for a short RTT path, 16 flows,
and a sending host faster than the receiving host, CUBIC
performs roughly four times better than BBRv2, as shown
in Figure 9. Based on our buffer size results described above,
we expected CUBIC to be faster on this short, deep buffer
path. The 40G to 10G speed mismatch appears to amplify
this difference. Note that despite the speed mismatch between
sender and receiver, packet loss rates are quite low. We also
ran 4, 8 and 12 flow tests, and found that BBRv2 and CUBIC
throughput is very similar up to 8 flows, but CUBIC is faster
with 12 and 16 flows on this path.

Another pattern we often see for slightly longer RTTs is
that CUBIC and BBRv2 start out sharing the link equally,
but over time CUBIC gets a larger and larger share of the
pipe, as shown in Figure 10. We believe this is due to BBRv2
probing and fairness mechanisms interacting with parallel
flows in short-RTT, deep buffer environments, allowing loss-
based algorithms to gain an advantage up to some RTT
threshold.

For paths with an RTT greater than 30ms, we see about 10
times more retransmits than on shorter paths. Figure 11 depicts
an example of longer retransmits. This is likely due to the fact
that as the path gets longer, the bursts of packets coming from
the 40G sender become larger. These packet bursts can be seen
in this (and other) plots as throughput spikes of greater than

6



(a) 10G sender (620 Mbps pacing/flow)

(b) 40G Sender (2.4 Gbps pacing/flow)

Fig. 8: Comparison of 10G to 10G vs. 40G to 10G

Fig. 9: 5ms RTT, low packet loss, CUBIC is considerably
faster

10 Gbps, as measured by iperf3 sender. Note that in this plot,
the CUBIC and BBRv2 tests are separate, not overlapped as
in the other plots.

We conducted several experiments to compare 8 flows (4
CUBIC, 4 BBRv2) versus 16 flows (8 CUBIC, 8 BBRv2).
Results are shown in Figure 12. Note that CUBIC achieves
more than twice as much bandwidth with twice as many flows.

We next look at some known lossy paths, where even single
flow tests show packet loss. Sample results are shown in Figure
13. In both Figures 13a and 13b we see it take quite a while for

Fig. 10: 9ms RTT, CUBIC and BBRv2 start out similar, then
CUBIC gains a larger share of the pipe over time

Fig. 11: 41ms RTT, similar performance, but BBRv2 has
roughly 6 times more retransmits

flow performance to stabilize. CUBIC and BBRv2 throughput
start out similar, but over time BBRv2 gets faster and faster
as loss events cause CUBIC to back off. These plots are
considerably different from what we see on the testbed, where
CUBIC and BBRv2 stabilize quite quickly. This is likely due
to packet loss being more bursty on production networks.

Comparison of Testbed Results to Real World Results

We see very similar patterns in the testbed results and results
from the production R&E network paths, despite the variance
in the results caused by background traffic on production paths.
In both cases, for 16 flows over high latency paths with packet
loss around 0.01%, BBRv2 is around 4 times faster (Figures
4b and 8b).

The only case where results are consistently different be-
tween testbed results and ESnet results is for paths with short
RRT and low packet loss (Figure 4a compared to Figure 9).
On the testbed we see BBRv2 is about 15% faster, while over
ESnet paths, we see CUBIC is 4 times faster. This is likely
due to the fact that the routers on ESnet path have much larger
buffers.

D. BBRv1 vs BBRv2

As mentioned in the related work section above, other
papers that have already compared BBRv2 to BBRv1, and con-

7



(a) 8 flows

(b) 16 flows

Fig. 12: CUBIC benefits from additional flows, BBRv2 does
not

firmed that BBRv2 is a significant improvement. In particular,
BBRv1 has known issues with a large number of retransmits.
We confirmed this both on the testbed and on ESnet.

Figure 14 shows that BBRv2 outperforms BBRv1 on the
40G Boston to 10G Sacramento path, and results for all other
test paths were similar. Both CUBIC and BBRv2 had far fewer
retransmits, and CUBIC throughput also increased by more
than a factor of 10. For the BBRv1 test, the retransmit rate
for this configuration was over 11%, an unacceptably high
number, regardless of throughput. BBRv1 also caused a very
large number of retransmits for CUBIC, while BBRv2 did not.

Results were even more dramatic for 16 flow tests on
the testbed, using a 100G sender over the 88ms loop to a
10G receiver. BBRv1 caused over 12% of the packets to be
retransmitted, and only allowed the 8 CUBIC flows a total of
40 Mbps.

E. BBRv2 Parameter Tuning

The goal of this experiment was to see if the default BBRv2
settings seem optimal for the Science DMZ use case. There
are a total of 50 BBRv2 parameters that can be modified by
editing the defaults set in /sys/module/tcp BBRv2/parameters.
Our test harness supports the ability to modify these BBRv2
variables. After reading through the code, we determined

(a) large RTT, lossy path, example 1, 5min test

(b) large RTT, lossy path, example 2, 60sec test

Fig. 13: BBRv2 advantage over CUBIC increases over time

that the following parameters might have an impact in our
environment:

• min rtt win sec (default 10 sec) : When min rtt estimate
expires, we enter PROBE RTT mode. We tested values
of 1,2,5,10,20.

• probe rtt mode ms (default = 200ms). How long to
probe for RTT. We tested values of 10,25,50,100,200,500.

• loss thresh (default = 5%), Estimate bandwidth probing
has gone too far if loss rate exceeds this level. We tested
values of 1,2,3,4,5.

• pacing gain: a vector of values controlling the BBRv2
state machine. We tested a range of values for the first
two vector elements.

We ran a set of tests with 4 parallel flows (2 BBRv2 and
2 CUBIC), and it turned out that the default setting for all of
these parameters gave the best performance. One sample plot
is shown in Figure 15, and a full set of plots is available in
the data archive for this paper [32]. In the future we plan to
run tests with 16 flows, with mismatched host speeds, and test
across additional BBRv2 parameters as well.

F. Test Result Consistency and Protocol Stability

All of the plots presented in the paper are representative
from the set of 10 tests we ran for each experiment. To confirm
that these plots are in fact representative, we did a simple
statistical analysis of the results. Tables II and III show the

8



TABLE II: COMPARING MEAN (M) & COEF. OF VARIANCE (C.V) FOR ESNET TESTBED.

Test
RTT < 30ms RTT > 30ms

BBRv2 CUBIC BBRv2 CUBIC
Mean C.V. Mean C.V. Mean C.V. Mean C.V.

No
loss

bbrv2/cubic - p1 9.6533 0.0030 9.8799 0.0024 9.4749 0.0080 9.8435 0.0019
bbrv2/cubic - p16 9.7891 0.0064 9.8827 0.0007 9.8044 0.0039 9.8348 0.0029

both - p16 3.1188 0.1834 6.7642 0.0849 3.3604 0.0627 6.4739 0.0334

0.001%
loss

bbrv2/cubic - p1 9.6545 0.0021 3.3341 0.4694 9.4834 0.0073 1.2988 0.1541
bbrv2/cubic - p16 9.7918 0.0061 9.8819 0.0008 9.7838 0.0041 9.7794 0.0071

both - p16 4.2258 0.1360 5.6566 0.1026 4.9394 0.0390 4.8894 0.0435

0.01%
loss

bbrv2/cubic - p1 2.3477 0.0017 1.0500 0.5585 2.3041 0.0018 0.2454 0.0722
bbrv2/cubic - p16 9.7586 0.0053 9.0397 0.1325 9.8131 0.0017 3.9534 0.0205

both - p16 6.1650 0.1954 3.6777 0.3352 8.0112 0.0068 1.7950 0.0276

0.1%
loss

bbrv2/cubic - p1 8.8108 0.0788 0.3308 0.5180 8.7230 0.0746 0.0472 0.2533
bbrv2/cubic - p16 9.7969 0.0037 5.1883 0.5058 9.7824 0.0038 0.7438 0.2552

both - p16 7.5959 0.1542 2.2361 0.5284 9.4057 0.0068 0.3652 0.2545

100G-to-10G
bbrv2/cubic - p16 - - - - 9.6275 0.0004 9.4377 0.0344

both - p16 - - - - 9.2094 0.0028 0.4254 0.0473

TABLE III: COMPARING M & C.V, BOST-DTN to ESNET & NON-ESNET HOSTS.

Test
RTT < 30ms RTT > 30ms

BBRv2 CUBIC BBRv2 CUBIC
Mean C.V. Mean C.V. Mean C.V. Mean C.V.

10G-to-10G ESNET both - p16 4.7750 0.0726 5.0057 0.1122 4.7733 0.0055 4.8860 0.0043
NON-ESNET both - p16 4.2526 0.0742 4.6333 0.0309 3.9346 0.2188 3.8361 0.2972

40G-to-10G
ESNET both - p8 4.5768 0.2991 5.2852 0.2399 8.3485 0.0899 1.2883 0.6450

both - p16 4.3490 0.2291 5.1557 0.1906 6.9421 0.1222 2.4023 0.3816

NON-ESNET both - p8 - - - - 8.2697 0.0626 2.9697 0.2500
both - p16 - - - - 8.1870 0.1512 1.9163 0.6094

mean and the coefficient of variation, or CV, which is defined
as the ratio of the standard deviation to the mean. The higher
the coefficient of variation, the greater the level of dispersion
around the mean. In general, distributions with CV less than
one are considered low-variance, while those with CV greater
than one are considered high-variance [33].

Table II shows the mean and CV from the testbed 10G
netem experiments. In the table headings, M = mean and CV
= coefficient of variation. P1 are single flow tests, and P16
are 16 flow tests. CUBIC throughput is highly dependant on
RTT, but due to space constraints we just divide the results
into two buckets: RTT < 30ms, and RTT ≥ 30ms. One can
see that the CV for testbed results is quite low in all cases.

Table II includes the mean and CV from tests between the
40G ESnet host and a set of ESnet perfSONAR hosts, and
Table III shows the mean and CV from tests between the
40G ESnet host and a set of non ESnet hosts, chosen mostly
from paths with known packet loss. Latency is again in just
two buckets: RTT < 30ms, and RTT ≥ 30ms These tables
show that the CV from bost-dtn.es.net to other ESnet hosts is
moderately low CV, and tests to other hosts have a CV that
is quite a bit higher, but still considerably less than one. This
allows us to look at the details of individual tests and expect
them to be representative.

The statistical analysis also shows that BBRv2 is much
more stable than CUBIC. On observing the average CV for

RTT less than 30ms across all the loss rates, we see average
CV of BBRv2 is 0.0647, which is approximately four times
more stable than CUBIC, which has an average CV of 0.2699.
Furthermore, for RTT greater than equal to 30ms, the average
CV of BBRv2 is 0.0184, which is approximately five times
more stable than CUBIC, which has an average CV of 0.0939.
Therefore, BBRv2 has overall more stability than CUBIC
across a wide range of loss rates.

VI. SUMMARY AND FUTURE WORK

This paper confirms that results from previous papers on
BBR which use data from Mininet are indeed applicable in a
Science DMZ environment with DTNs running large numbers
of parallel flows.

The key takeaways from the results presented in this paper
are:

• BBR does much better than CUBIC on lossy paths, and
the higher the loss rate and RTT, the more BBR wins out.

• Faster hosts sending parallel flows to slower hosts leads
to packet loss, and BBR does much better than CUBIC
in this situation.

• The BBRv1 retransmit rate is unacceptably high with
parallel flows, and thus BBRv1 should not be used with
parallel data transfer applications.

• BBR prefers smaller switch buffers, and CUBIC prefers
larger buffers. As network speed increases, larger and

9



(a) BBRv1 and CUBIC, clean path, 61ms RTT

(b) BBRv2 and CUBIC, clean path, 61ms RTT

Fig. 14: Dramatic difference in retransmit rate between BBRv1
and BBRv2

Fig. 15: testing various setting for min rtt win sec

larger buffers are impractical, and lead to unstable CUBIC
behaviour, so BBR will be a better choice in the future.

• Long BBRv2 flows do eventually push aside CUBIC
flows on long latency high packet loss paths.

A common DTN use case is where the RTT is typically 50-
100ms and parallel flows are used - here BBRv2 is a big win
over CUBIC. High Speed (40G and 100G) DTN’s are often
used to provide data to 10G hosts. This speed mismatch leads
to additional packet loss, which BBR handles much better than
CUBIC.

Since BBR is not a loss-based congestion control algorithm,
it will tend to push aside loss-based congestion control such
as CUBIC on long lived flows. Data transfer tools that use
parallel flows partially mitigate this issue. We did find one
situation where parallel flows CUBIC was considerably faster
than BBRv2: that being a large number of flows on a short,
deep buffered path and a fast host sending to a slow host.
Overall we feel that the advantages of BBRv2 greatly outweigh
concerns about BBRv2 negatively impacting CUBIC.

Some additional testing we would like to do includes using
other representative shallow buffer network devices in larger
topologies and exploring protocol behavior in additional speed
mismatched scenarios on the testbed. We plan do additional
testing to determine the optimal number of parallel BBRv2
flows, and we plan to test additional BBRv2 parameters for the
DTN use case. We are also looking for additional perfSONAR
hosts that will allow us to run five minute tests.

Currently running BBRv2 requires patching the kernel,
something most production DTN administrators are unwilling
to do. We hope the Linux kernel team will accept BBRv2 into
the mainline kernel soon, as BBRv2 will be a big win for
Science DMZs, and the data-intensive science projects which
use them.

All data collected for this paper are available at
https://downloads.es.net/INDIS-2021/. This includes output
from iperf3 and ss, as well at the gnuplot [34] files used to
generate the plots in this paper.

VII. ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research (ASCR),
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

This manuscript has been authored by an author at Lawrence
Berkeley National Laboratory under Contract No. DE-AC02-
05CH11231 with the U.S. Department of Energy. The U.S.
Government retains, and the publisher, by accepting the article
for publication, acknowledges, that the U.S. Government re-
tains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript,
or allow others to do so, for U.S. Government purposes.

In addition, see the content disclaimer, below.2

2This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to contain correct
information, neither the United States Government nor any agency thereof, nor
the Regents of the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof, or the Regents of the
University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or
any agency thereof or the Regents of the University of California.

10



REFERENCES

[1] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The
science dmz: A network design pattern for data-intensive science,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: Association for Computing Machinery, 2013. [Online].
Available: https://doi.org/10.1145/2503210.2503245

[2] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “Bbr: Congestion-based congestion control: Measuring
bottleneck bandwidth and round-trip propagation time,” Queue,
vol. 14, no. 5, p. 20–53, Oct. 2016. [Online]. Available: https:
//doi.org/10.1145/3012426.3022184

[3] N. Cardwell, Y. Cheng, S. H. Yeganeh, and V. Ja-
cobson, “BBR Congestion Control,” Working Draft, IETF
Secretariat, Internet-Draft draft-cardwell-iccrg-bbr-congestion-control-
00, 2017. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-cardwell-iccrg-bbr-congestion-control-00.txt

[4] “PerSONAR Nodes Worldwide.” [Online]. Available: http://stats.es.net/
ServicesDirectory/

[5] “Mininet.” [Online]. Available: http://mininet.org/
[6] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno

Modification to TCP’s Fast Recovery Algorithm,” Internet Requests for
Comments, RFC Editor, RFC 6582, April 2012. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6582.txt

[7] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 64–74, Jul.
2008. [Online]. Available: https://doi.org/10.1145/1400097.1400105

[8] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” in Proceedings
of the Conference on Communications Architectures, Protocols and
Applications, ser. SIGCOMM ’94. New York, NY, USA: Association
for Computing Machinery, 1994, p. 24–35. [Online]. Available:
https://doi.org/10.1145/190314.190317

[9] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,
Architecture, Algorithms, Performance,” IEEE/ACM Transactions on
Networking, vol. 14, no. 6, pp. 1246–1259, 2006.

[10] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi,
“When to use and when not to use bbr: An empirical analysis and
evaluation study,” in IMC ’19: Proceedings of the Internet Measurement
Conference, 10 2019, pp. 130–136.

[11] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a Deeper Understanding of TCP BBR Congestion
Control,” in 2018 IFIP Networking Conference (IFIP Networking) and
Workshops, 05 2018, pp. 1–9.

[12] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha,
Y. Seung, M. Mathis, and V. Jacobson, “BBRv2: a model-based
congestion control,” Presentation in the Internet Congestion Control
Research Group (ICCRG) at IETF 105 Update, Montreal, Canada,
July, 2019. [Online]. Available: https://datatracker.ietf.org/meeting/104/
materials/slides-104-iccrg-an-update-on-bbr-00

[13] B. Jaeger, D. Scholz, D. Raumer, F. Geyer, and G. Carle, “Reproducible
measurements of tcp bbr congestion control,” Computer Communica-
tions, vol. 144, 05 2019.

[14] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in 2017 IEEE 25th International Conference on
Network Protocols, 10 2017, pp. 1–10.

[15] J. Crichigno, Z. Csibi, E. Bou-Harb, and N. Ghani, “Impact of segment
size and parallel streams on tcp bbr,” 2018 41st International Conference
on Telecommunications and Signal Processing (TSP), pp. 1–5, 2018.

[16] E. Kfoury, J. Gomez, J. Crichigno, and E. Bou-Harb, “An emulation-
based evaluation of tcp bbrv2 alpha for wired broadband,” Computer
Communications, vol. 161, 07 2020.

[17] S. Zhang, “An evaluation of bbr and its variants,” ArXiv, vol.
abs/1909.03673, 2019.

[18] Y.-J. Song, G.-H. Kim, I. Mahmud, W.-K. Seo, and Y.-Z. Cho, “Under-
standing of bbrv2: Evaluation and comparison with bbrv1 congestion
control algorithm,” IEEE Access, vol. PP, pp. 1–1, 02 2021.

[19] “ESnet Testbed.” [Online]. Available: https://www.es.net/
network-r-and-d/experimental-network-testbeds/100g-sdn-testbed/

[20] B. Tierney, J. Boote, E. Boyd, A. Brown, M. Grigoriev, J. Metzger,
M. Swany, M. Zekauskas, and J. Zurawski, “perfSONAR: Instantiating
a global network measurement framework”,” in Proceedings of the SOSP
Workshop on Real Overlays and Distributed Systems, 2009.

[21] “iperf3.” [Online]. Available: http://software.es.net/iperf/
[22] “perfSONAR Docker images.” [Online]. Available: https://docs.

perfsonar.net/install docker.html
[23] “perfSONAR Docker image for BBR testing.” [Online]. Available:

https://hub.docker.com/r/dtnaas/perfsonar-testpoint
[24] I. Foster, “Globus Online: Accelerating and Democratizing Science

through Cloud-Based Services,” IEEE Internet Computing, vol. 15,
no. 3, p. 70–73, May 2011. [Online]. Available: https://doi.org/10.1109/
MIC.2011.64

[25] “Globus network configuration.” [Online]. Available: https://docs.globus.
org/globus-connect-server/v4/#setting endpoint network use options

[26] “Fast Data Transfer (FDT).” [Online]. Available: https://github.com/
fast-data-transfer/fdt

[27] B. Tierney, “Recent Linux TCP Updates, and how to
tune your 100G host,” Presented at INDIS 2016. [Online].
Available: https://scinet.supercomputing.org/community/documents/36/
sc16-techtalk01-100G-Tuning-INDIS.tierney.pdf

[28] S. Hemminger, “Network emulation with netem,” Linux Conf Au, 05
2005.

[29] “ESnet’s perfSONAR Dashboard.” [Online]. Available: http:
//ps-dashboard.es.net/maddash-webui/

[30] “ss tool.” [Online]. Available: https://linux.die.net/man/8/ss
[31] J. Warner, “Network device buffer size listing.” [Online]. Available:

https://people.ucsc.edu/∼warner/buffer.html
[32] “ESnet Data Repository.” [Online]. Available: https://downloads.es.net/

INDIS-2021
[33] “Coefficient of Variation.” [Online]. Available: https://en.wikipedia.org/

wiki/Coefficient of variation
[34] “gnuplot.” [Online]. Available: http://www.gnuplot.info/

11

https://doi.org/10.1145/2503210.2503245
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/3012426.3022184
http://www.ietf.org/internet-drafts/draft-cardwell-iccrg-bbr-congestion-control-00.txt
http://www.ietf.org/internet-drafts/draft-cardwell-iccrg-bbr-congestion-control-00.txt
http://stats.es.net/ServicesDirectory/
http://stats.es.net/ServicesDirectory/
http://mininet.org/
https://www.rfc-editor.org/rfc/rfc6582.txt
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/190314.190317
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00
https://www.es.net/network-r-and-d/experimental-network-testbeds/100g-sdn-testbed/
https://www.es.net/network-r-and-d/experimental-network-testbeds/100g-sdn-testbed/
http://software.es.net/iperf/
https://docs.perfsonar.net/install_docker.html
https://docs.perfsonar.net/install_docker.html
https://hub.docker.com/r/dtnaas/perfsonar-testpoint
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/MIC.2011.64
https://docs.globus.org/globus-connect-server/v4/#setting_endpoint_network_use_options
https://docs.globus.org/globus-connect-server/v4/#setting_endpoint_network_use_options
https://github.com/fast-data-transfer/fdt
https://github.com/fast-data-transfer/fdt
https://scinet.supercomputing.org/community/documents/36/sc16-techtalk01-100G-Tuning-INDIS.tierney.pdf
https://scinet.supercomputing.org/community/documents/36/sc16-techtalk01-100G-Tuning-INDIS.tierney.pdf
http://ps-dashboard.es.net/maddash-webui/
http://ps-dashboard.es.net/maddash-webui/
https://linux.die.net/man/8/ss
https://people.ucsc.edu/~warner/buffer.html
https://downloads.es.net/INDIS-2021
https://downloads.es.net/INDIS-2021
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation
http://www.gnuplot.info/

	Introduction
	Overview and Goals
	Related Work
	Testing Tools and Environment
	Results
	Comparison and competition between CUBIC and BBRv2
	Buffer Size Testing
	Real World Testing
	BBRv1 vs BBRv2
	BBRv2 Parameter Tuning
	Test Result Consistency and Protocol Stability

	Summary and Future Work
	Acknowledgments
	References

