

Advantages of TCP pacing using FQ

Brian Tierney, ESnet bltierney@es.net http://fasterdata.es.net

TCP option: Fair Queuing Scheduler (FQ)

Available in Linux kernel 3.11 (released late 2013) or higher

- available in Fedora 20, Debian 8, and Ubuntu 13.10
- Backported to 3.10.0-327 kernel in v7.2 CentOS/RHEL (Dec 2015)

To enable Fair Queuing (which is off by default), do:

- tc qdisc add dev \$ETH root fq
- Or add this to /etc/sysctl.conf:
 - net.core.default_qdisc = fq

To both pace and shape the traffic:

- tc qdisc add dev \$ETH root fq maxrate Ngbit
 - Can reliably pace up to a maxrate of 32Gbps on a fast processors

Can also do application pacing using a 'setsockopt(SO_MAX_PACING_RATE)' system call

- iperf3 supports this via the "-bandwidth' flag

Advantages of Pacing

- The following plots show a clear benefit from pacing TCP
 - Proper pacing of flows can completely eliminate TCP 'sawtooth'
- The advantage is even greater with parallel flows
- We recommend all Data Transfer Nodes (DTNs) use FQ-based pacing
- Pacing also helps with eliminate packet loss due to under-buffered network hardware, and under-powered security devices.

TCP performance: BNL to Pantex ; CentOS 6.5 vs CentOS 7.2 10G Host to 1G Host, rtt = 88ms

9/30/16

4

Right side: tput of each stream

Streams appear to be much better balanced with FQ, pacing to 2.4 performed best

Streams appear to be much better balanced with FQ

Parallel Stream Testing

100G Host, Parallel Streams: no pacing vs 20G pacing

8 9/30/16

9 9/30/16

Fast Host to Slow host

Throttled the receive host using 'cpupower' command:

/bin/cpupower -c all frequency-set -f 1.2GHz

10 9/30/16

FQ Packets are much more evenly spaced tcptrace/xplot output: FQ on left, Standard TCP on right

Run your own tests

- Find a remote perfSONAR host on a path of interest
 - Most of the 2000+ worldwide perfSONAR hosts will accept tests
 - See: http://stats.es.net/ServicesDirectory/
- Run some tests
 - bwctl -c hostname -t60 --parsable > results.json
- Convert JSON to gnuplot format:
 - <u>https://github.com/esnet/iperf/tree/master/contrib</u>

