
Recent	Linux	TCP	Updates,	and	
how	to	tune	your	100G	host		
Nate	Hanford,	Brian	Tierney,	ESnet	
blDerney@es.net	
hGp://fasterdata.es.net	

Internet2	Technology	Exchange,		

Sept	27,	2016,	Miami,	FL	

Observa(on	#1	

•  TCP	is	more	stable	in	CentOS7	vs	CentOS6	
–  Throughput	ramps	up	much	quicker	

•  More	aggressive	slow	start	

–  Less	variability	over	life	of	the	flow	

9/30/16	2	

Berkeley	to	Amsterdam	

9/30/16	4	

New	York	to	Texas	

Observa(on	#2	

•  Turning	on	FQ	helps	throughput	even	more	
–  TCP	is	even	more	stable	
–  Works	beGer	with	small	buffer	devices	

•  Pacing	to	match	boGleneck	link	works	beGer	yet	

9/30/16	5	

TCP	op(on:	Fair	Queuing	Scheduler	(FQ)	
Available	in	Linux	kernel	3.11	(released	late	2013)	or	higher		

–  available	in	Fedora	20,	Debian	8,	and	Ubuntu	13.10	
–  Backported	to	3.10.0-327	kernel	in	v7.2	CentOS/RHEL	(Dec	2015)	

To	enable	Fair	Queuing	(which	is	off	by	default),	do:	
–  tc	qdisc	add	dev	$ETH	root	fq	
Or	add	this	to	/etc/sysctl.conf:	
					net.core.default_qdisc	=	fq	

To	both	pace	and	shape	the	traffic:	
–  tc	qdisc	add	dev	$ETH	root	fq	maxrate	Ngbit	

•  Can	reliably	pace	up	to	a	maxrate	of	32Gbps	on	a	fast	processors	

Can	also	do	applicaDon	pacing	using	a	‘setsockopt(SO_MAX_PACING_RATE)’	system	call	
–  iperf3	supports	this	via	the	“—bandwidth’	flag	

	

FQ	Background	

•  Lots	of	discussion	around	‘buffer	bloat’	starDng	in	2011	
–  hGps://www.bufferbloat.net/	

•  Google	wanted	to	be	able	to	get	higher	uDlizaDon	on	their	network	
–  Paper:	“B4:	Experience	with	a	Globally-Deployed	Sonware	Defined	WAN,	
SIGCOMM	2013	

•  Google	hired	some	very	smart	TCP	people	
•  Van	Jacobson,	MaG	Mathis,	Eric	Dumazet,	and	others	

•  Result:	Lots	of	improvements	to	the	TCP	stack	in	2013-14,	including	most	
notably	the	‘fair	queuing’	pacer	

9/30/16	7	

9/30/16	8	

New	York	to	Texas:	With	Pacing	

100G	Host	Tuning	

9/30/16	9	

Test	Environment	
•  Hosts:	

–  Supermicro	X10DRi	DTNs	
–  Intel	Xeon	E5-2643v3,	2	sockets,	6	cores	each	
–  CentOS	7.2	running	Kernel	3.10.0-327.el7.x86_64	
–  Mellanox	ConnectX-4	EN/VPI	100G	NICs	with	ports	in	EN	mode	
–  Mellanox	OFED	Driver	3.3-1.0.4	(03	Jul	2016),	Firmware	12.16.1020	

•  Topology	
–  Both	systems	connected	to	Dell	Z9100	100Gbps	ON	Top-of-Rack	Switch	
–  Uplink	to	nersc-tb1	ALU	SR7750	Router	running	100G	loop	to	Starlight	and	back		

•  92ms	RTT	
–  Using	Tagged	802.1q	to	switch	between	Loop	and	Local	VLANs	
–  LAN	had	54usec	RTT	

•  ConfiguraDon:		
–  MTU	was	9000B	
–  irqbalance,	tuned,	and	numad	were	off	
–  core	affinity	was	set	to	cores	7	and	8	(on	the	NUMA	node	closest	to	the	NIC)	
–  All	tests	are	IPV4	unless	otherwise	stated	
	

9/30/16	10	

nersc-tb1

Dell z9100

nersc-tbn-4 nersc-tbn-5

star-tb1

100G loop: RTT = 92ms

100G

StarLight (Chicago)

Oakland, CA

Each host has:
•  Mellanox ConnectX-4 (100G)
•  Mellanox ConnectX-3 (40G)

Alcatel 7750 Router

Testbed	Topology	
Alcatel 7750 Router

40G

100G 100G
40G

Our	Current	Best	Single	Flow	Results	
•  TCP	

–  LAN:	79Gbps	
–  WAN	(RTT	=	92ms):	36.5	Gbps,	49	Gbps	using	‘sendfile’	API	(‘zero-copy’)	
–  Test	commands:		

•  LAN:	nuGcp	-i1	-xc	7/7	–w1m	-T30	hostname	
•  WAN:	nuGcp	-i1	-xc	7/7	–w900M	-T30	hostname	

•  UDP:	
–  LAN	and	WAN:	33	Gbps	
–  Test	command:	nuGcp	-l8972	-T30	-u	-w4m	-Ru	-i1	-xc7/7	hostname	

Others	have	reported	up	to	85	Gbps	LAN	performance	with	similar	hardware	

9/30/16	12	

CPU	governor		
Linux	CPU	governor	(P-States)	seung	makes	a	big	difference:	

RHEL: cpupower frequency-set -g performance
Debian:		cpufreq-set -r -g performance

57Gbps	default	seungs	(powersave)	vs.	79Gbps	‘performance’	mode	on	the	LAN	
To	watch	the	CPU	governor	in	acDon:		
watch -n 1 grep MHz /proc/cpuinfo

cpu	MHz									:	1281.109	
cpu	MHz									:	1199.960	
cpu	MHz									:	1299.968	
cpu	MHz									:	1199.960	
cpu	MHz									:	1291.601	
cpu	MHz									:	3700.000	
cpu	MHz									:	2295.796	
cpu	MHz									:	1381.250	
cpu	MHz									:	1778.492	

9/30/16	13	

CPU	frequency	
•  Driver:	Kernel	module	or	code	that	makes	CPU	frequency	calls	to	hardware	
•  Governor:	Driver	seung	that	determines	how	the	frequency	will	be	set	
•  Performance	Governor:	Bias	towards	higher	frequencies	
•  Userspace	Governor:	Allow	user	to	specify	exact	core	and	package	frequencies	
•  Only	the	Intel	P-States	Driver	can	make	use	of	Turbo	Boost	
•  Check	current	seungs:	cpupower frequency-info

9/30/16	14	

P-States	
Performance	

ACPI-CPUfreq	
Performance	

ACPI-CPUfreq	
Userspace	

LAN	 79G	 72G	 67G	

WAN	 36G	 36G	 27G	

TCP	Buffers	
add to /etc/sysctl.conf
allow testing with 2GB buffers

net.core.rmem_max = 2147483647
net.core.wmem_max = 2147483647
allow auto-tuning up to 2GB buffers

net.ipv4.tcp_rmem = 4096 87380 2147483647
net.ipv4.tcp_wmem = 4096 65536 2147483647

2GB	is	the	max	allowable	under	Linux	
WAN	BDP	=	12.5GB/s*92ms	=	1150MB	(autotuning	set	this	to	1136MB)	
LAN	BDP	=	12.5GB/s*54us	=		675KB		(autotuning	set	this	to	2-9MB)	
Manual	buffer	tuning	made	a	big	difference	on	the	LAN:	

–  50-60	Gbps	vs	79	Gbps	

9/30/16	15	

zerocopy	(sendfile)	results	

•  iperf3	–Z	opDon	
•  No	significant	difference	on	the	LAN	
•  Significant	improvement	on	the	WAN	

–  36.5	Gbps	vs	49	Gbps	

9/30/16	16	

IPv4	vs	IPv6	results	

•  IPV6	is	slightly	faster	on	the	WAN,	slightly	slower	on	the	LAN	

•  LAN:	
–  IPV4:	79	Gbps	
–  IPV6:	77.2	Gbps	

•  WAN	
–  IPV4:	36.5	Gbps	
–  IPV6:	37.3	Gbps	

9/30/16	17	

Don’t	Forget	about	NUMA	Issues	

9/30/16	18	

•  Up	to	2x	performance	difference	if	you	use	the	wrong	
core.	

•  If	you	have	a	2	CPU	socket	NUMA	host,	be	sure	to:	
–  Turn	off	irqbalance	
–  Figure	out	what	socket	your	NIC	is	connected	to:	
 cat /sys/class/net/ethN/device/numa_node

–  Run	Mellanox		IRQ	script:	
 /usr/sbin/set_irq_affinity_bynode.sh 1 ethN

–  Bind	your	program	to	the	same	CPU	socket	as	the	NIC:	
 numactl -N 1 program_name

•  Which	cores	belong	to	a	NUMA	socket?	
–  cat	/sys/devices/system/node/node0/cpulist	
–  (note:	on	some	Dell	servers,	that	might	be:	0,2,4,6,...)	

Secngs	to	leave	alone	in	CentOS7	

Recommend	leaving	these	at	the	default	seungs,	and	none	of	these	seem	to	
impact	performance	much	

•  Interrupt	Coalescence		
•  Ring	Buffer	size	
•  LRO	(off)	and	GRO	(on)	
•  net.core.netdev_max_backlog		

•  txqueuelen	
•  tcp_Dmestamps	

9/30/16	19	

Tool	Selec(on	
•  Both	nuGcp	and	iperf3	have	different	strengths.		
•  nuGcp	is	about	10%	faster	on	LAN	tests	
•  iperf3	JSON	output	opDon	is	great	for	producing	plots	
•  Use	both!	Both	are	part	of	the	‘perfsonar-tools’	package	

–  InstallaDon	instrucDons	at:	hGp://fasterdata.es.net/performance-tesDng/
network-troubleshooDng-tools/	

9/30/16	20	

OS	Comparisons	

•  CentOS7	(3.10	kernel)	vs.	Ubuntu	14.04	(4.2	kernel)	vs.	Ubuntu	16.04	(4.4	kernel)	
–  Note:	4.2	kernel	are	about	5-10%	slower	(sender	and	receiver)	

•  Sample	Results:	
•  CentOS7	to	CentOS7:	79	Gbps	

•  CentOS7	to	Ubuntu	14.04	(4.2.0	kernel):	69	Gbps	

•  Ubuntu	14.04	(4.2)		to	CentOS7:	71	Gbps	

•  CentOS7	to	Ubuntu	16.04	(4.4	kernel)	:	73	Gbps		

•  Ubuntu	16.04	(4.4	kernel)		to	CentOS7:	75	Gbps	

•  CentOS7	to	Debian	8.4	with	4.4.6	kernel:	73.6G	

•  Debian	8.4	with	4.4.6	Kernel	to	CentOS7:	76G	

9/30/16	21	

BIOS	Secng	

•  DCA/IOAT/DDIO:	ON	
–  Allows	the	NIC	to	directly	address	the	cache	in	DMA	transfers	

•  PCIe	Max	Read	Request:	Turn	it	up	to	4096,	but	our	results	suggest	it	
doesn’t	seem	to	hurt	or	help	

•  Turboboost:	ON	
•  Hyperthreading:	OFF	

–  Added	excessive	variability	in	LAN	performance	(51G	to	77G)	

•  node/memory	interleaving:	??	

9/30/16	22	

PCI	Bus	Commands	
Make	sure	you’re	installing	the	NIC	in	the	right	slot.	Useful	commands	include:	

Find	your	PCI	slot:	
 lspci | grep Ethernet
 81:00.0 Ethernet controller: Mellanox Technologies MT27700 Family
[ConnectX-4]

Confirm	that	this	slot	is	PCIeGen3	x16:	
	lspci -s 81:00.0 -vvv | grep PCIeGen
 [V0] Vendor specific: PCIeGen3 x16

Confirm	that	PCI	MaxReadReq	is	4096B	
lspci -s 81:00.0 -vvv | grep MaxReadReq
 MaxPayload 256 bytes, MaxReadReq 4096 bytes

If	not,	you	can	increase	it	using	‘setpci’	

•  For	more	details,	see:	hGps://community.mellanox.com/docs/DOC-2496	

9/30/16	23	

Benchmarking	vs.	Produc(on	Host	Secngs	

There	are	some	seungs	that	will	give	you	more	consistent	results	for	
benchmarking,	but	you	may	not	want	to	run	on	a	producDon	DTN	
Benchmarking:	
•  Use	a	specific	core	for	IRQs:	
 /usr/sbin/set_irq_affinity_cpulist.sh 8 ethN

•  	Use	a	fixed	clock	speed	(set	to	the	max	for	your	processor):	
–  /bin/cpupower -c all frequency-set -f 3.4GHz

ProducDon	DTN:	
 /usr/sbin/set_irq_affinity_bynode.sh 1 ethN
 /bin/cpupower frequency-set -g performance

9/30/16	24	

FQ	on	100G	Hosts	

9/30/16	25	

100G	Host,	Parallel	Streams:		
no	pacing	vs	20G	pacing	

9/30/16	26	

We	also	see	consistent	loss	on	the	LAN	with	4	streams,	no	pacing	
Packet	loss	due	to	small	buffers	in	Dell	Z9100	switch?	

100G	Host	to	10G	Host	

9/30/16	27	

Fast	Host	to	Slow	host	

9/30/16	28	

ThroGled	the	receive	host	using	‘cpupower’	command:		
/bin/cpupower -c all frequency-set -f 1.2GHz

Summary	of	our	100G	results	

•  New	Enhancements	to	Linux	Kernel	make	tuning	easier	in	general.	

•  A	few	of	the	standard	10G	tuning	knobs	no	longer	apply	
•  TCP	buffer	autotuning	does	not	work	well	100G	LAN	
•  Use	the	‘performance’	CPU	governor	

•  Use	FQ	Pacing	to	match	receive	host	speed	if	possible	

•  Important	to	be	using	the	Latest	driver	from	Mellanox		
–  version:	3.3-1.0.4	(03	Jul	2016),	firmware-version:	12.16.1020	

9/30/16	29	

What’s	next	in	the	TCP	world?	

•  TCP	BBR	(BoGleneck	Bandwidth	and	RTT)	from	Google	
–  hGps://patchwork.ozlabs.org/patch/671069/	
–  Google	Group:	hGps://groups.google.com/forum/#!topic/bbr-dev	

•  A	detailed	descripDon	of	BBR	will	be	published	in	ACM	Queue,	Vol.	14	No.	5,	
September-October	2016:	
–  "BBR:	CongesDon-Based	CongesDon	Control".	

•  Google	reports	2-4	orders	of	magnitude	performance	improvement	on	a	path	
with	1%	loss	and	100ms	RTT.	
–  Sample	result:		cubic:	3.3Mbps,	BBR:	9150Mbps!!	
–  Early	tesDng	on	ESnet	less	conclusive,	but	seems	to	help	on	some	paths	

9/30/16	30	

Ini(al	BBR	TCP	results	(bwctl,	3	streams,	40	sec	test)	
Remote	Host	 Throughput	 Retransmits	

perfsonar.nssl.noaa.gov	 htcp:	183	
bbr:	803	

htcp:	1070	
bbr:	240340	

kstar-ps.nfri.re.kr	 htcp:	4301	
bbr:	4430	

htcp:1641	
bbr:	98329	

ps1.jpl.net	 htcp:	940	
bbr:	935	

htcp:	1247	
bbr:	399110	

uhmanoa-tp.ps.uhnet.net	 htcp:	5051	
bbr:	3095	

htcp:	5364	
bbr:	412348	

9/30/16	31	

Varies	between	4x	beGer	and	30%	worse,	all	with	WAY	
more	retransmits.	

More	Informa(on	

•  hGp://fasterdata.es.net/host-tuning/packet-pacing/	
•  hGp://fasterdata.es.net/host-tuning/100g-tuning/	
•  Talk	on	Switch	Buffer	size	experiments:	

–  hGp://meeDngs.internet2.edu/2015-technology-exchange/detail/
10003941/	

•  Mellanox	Tuning	Guide:	
–  hGps://community.mellanox.com/docs/DOC-1523	

•  Email:	BLTierney@es.net	

9/30/16	32	

Extra	Slides	

9/30/16	33	

mlnx_tune	command	

•  See:	hGps://community.mellanox.com/docs/DOC-1523	

9/30/16	34	

Coalescing Parameters

•  Varies by manufacturer
•  usecs: Wait this amount of microseconds after 1st packet is received/

transmitted
•  frames: Interrupt after this many frames are received or transmitted
•  tx-usecs and tx-frames aren’t as important as rx-usecs
•  Due to the higher line rate, lower is better, until interrupts get in the way

(at 100G, we are sending almost 14 frames/usec
•  Default settings seem best for most cases
 8/30/2016 35

A	small	amount	of	packet	loss	makes	a	huge	
difference	in	TCP	performance	

Metro	Area	

Local	
(LAN)	

Regional	 ConDnental	

InternaDonal	

Measured	(TCP	Reno)	 Measured	(HTCP)	 Theore(cal	(TCP	Reno)	 Measured	(no	loss)	

With	loss,	high	performance		beyond	
metro	distances	is	essen(ally	
impossible	

TCP’s	Conges(on	Control	

© 2015 Internet2

50ms simulated RTT
Congestion w/ 2Gbps UDP traffic
HTCP / Linux 2.6.32

Slide	from	Michael	Smitasin,	LBLnet	

Fair	Queuing	and	and	Small	Switch	Buffers	
TCP	Throughput	on	Small	Buffer	Switch	
(CongesDon	w/	2Gbps	UDP	background	traffic)	

Requires	CentOS	7.2	or	higher	
	

	tc	qdisc	add	dev	EthN	root	fq	
	Enable	Fair	Queuing	
		

	Pacing	side	effect	of	Fair	Queuing	yields	~1.25Gbps	increase	in	
throughput	@	10Gbps	on	our	hosts	
	
	TSO	differences	sDll	negligible	on	our	hosts	w/	Intel	X520	

Slide	from	Michael	Smitasin,	LBL	

More	examples	of	pacing	helping	

Parallel	Stream	
Test	1	
Leh	side:		
					sum	of	4	streams	
	
Right	side:		
				tput	of	each	stream	
	
Streams	appear	to	be	
much	beier	balanced	
with	FQ,	pacing	to	2.4	
performed	best	

Parallel	Stream	
Test	2	
	
Leh	side:		
					sum	of	4	streams	
	
Right	side:		
				tput	of	each	stream	
	
Streams	appear	to	be	
much	beier	balanced	
with	FQ	

FQ	Packets	are	much	more	evenly	spaced	
tcptrace/xplot	output:	FQ	on	leh,	Standard	TCP	on	right	

42	

Run	your	own	tests	

•  Find	a	remote	perfSONAR	host	on	a	path	of	interest	
–  Most	of	the	2000+	worldwide	perfSONAR	hosts	will	accept	tests	

•  See:	hGp://stats.es.net/ServicesDirectory/	
•  Run	some	tests	

–  bwctl	-c	hostname	-t60	--parsable	>	results.json	

•  Convert	JSON	to	gnuplot	format:	
–  hGps://github.com/esnet/iperf/tree/master/contrib	

